2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5′- and 3′-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a ‘base-displaced intercalated’ conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson−Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.
The
conformation of an N2-dG adduct
arising from the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a potent food mutagen, was determined
in 5′-d(C1T2C3X4G5C6G7C8C9A10T11C12)-3′:5′-d(G13A14T15G16G17C18G19C20C21G22A23G24)-3′; X = N2-dG-IQ, in which the modified nucleotide X4 corresponds to G1 in the 5′-d(G1G2CG3CC)-3′ NarI restriction endonuclease site. Circular dichroism (CD) revealed
blue shifts relative to the unmodified duplex, consistent with adduct-induced
twisting, and a hypochromic effect for the IQ absorbance in the near
UV region. NMR revealed that the N2-dG-IQ
adduct adopted a base-displaced intercalated conformation in which
the modified guanine remained in the anti conformation
about the glycosidic bond, the IQ moiety intercalated into the duplex,
and the complementary base C21 was displaced into the major
groove. The processing of the N2-dG-IQ
lesion by hpol η is sequence-dependent; when placed at the reiterated
G3 position, but not at the G1 position, this
lesion exhibits a propensity for frameshift replication [Choi, J.
Y., et al. (2006) J. Biol. Chem., 281, 25297–25306]. The structure of the N2-dG-IQ adduct at the nonreiterated G1 position
was compared to that of the same adduct placed at the G3 position [Stavros, K. M., et al. (2014) Nucleic Acids Res., 42, 3450–3463]. CD indicted minimal spectral
differences between the G1 vs G3N2-dG-IQ adducts. NMR indicated that the N2-dG-IQ adduct exhibited similar base-displaced intercalated
conformations at both the G1 and G3 positions.
This result differed as compared to the corresponding C8-dG-IQ adducts
placed at the same positions. The C8-dG-IQ adduct adopted a minor
groove conformation when placed at position G1 but a base-displaced
intercalated conformation when placed at position G3 in
the NarI sequence. The present studies suggest that
differences in lesion bypass by hpol η may be mediated by differences
in the 3′-flanking sequences, perhaps modulating the ability
to accommodate transient strand slippage intermediates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.