Extracellular vesicles have been the focus of a large number of studies in the past five years. Exosomes, a subgroup of extracellular vesicles, are of particularly high interest because they partake in a wide number of biological pathways. Produced by a variety of cells, exosomes have an important role in both physiological and pathological conditions. Exosome cargo heavily defines the vesicles' unique characteristics, and cargo with the most intriguing prospects in its' biomedical applications is the non-coding RNAs. Non-coding RNAs, and specifically microRNAs are implicated in the regulation of many biological processes and have been associated with numerous diseases. Exosomes containing such important cargo can be used as biomarkers, therapeutic biomaterials, or even drug carriers. The potential media use of exosomes seems promising. However, some obstacles should be overcome before their clinical application. Synthetic exosome-like biomolecules may be a solution, but their production is still in their beginning stages. This review provides concise information regarding the current trends in exosome studies.
RNA modifications have recently become the focus of attention due to their extensive regulatory effects in a vast array of cellular networks and signaling pathways. Just as epigenetics is responsible for the imprinting of environmental conditions on a genetic level, epitranscriptomics follows the same principle at the RNA level, but in a more dynamic and sensitive manner. Nevertheless, its impact in the field of cardiovascular disease (CVD) remains largely unexplored. CVD and its associated pathologies remain the leading cause of death in Western populations due to the limited regenerative capacity of the heart. As such, maintenance of cardiac homeostasis is paramount for its physiological function and its capacity to respond to environmental stimuli. In this context, epitranscriptomic modifications offer a novel and promising therapeutic avenue, based on the fine-tuning of regulatory cascades, necessary for cardiac function. This review aimed to provide an overview of the most recent findings of key epitranscriptomic modifications in both coding and non-coding RNAs. Additionally, the methods used for their detection and important associations with genetic variations in the context of CVD were summarized. Current knowledge on cardiac epitranscriptomics, albeit limited still, indicates that the impact of epitranscriptomic editing in the heart, in both physiological and pathological conditions, holds untapped potential for the development of novel targeted therapeutic approaches in a dynamic manner.
The COVID-19 pandemic has radically changed the lives of individuals. To date, there is no specific antiviral drug available against SARS-CoV-2 and the recently developed vaccines are very promising; however, their influence on the pandemic remains limited. The most effective strategy to reduce the spread of the virus is social distancing and social lockdowns. All humanity is going through a period in which the health domain is at the forefront, demanding the adoption of new habits to protect individuals and public health, such as the continued use of masks and vigilant hand hygiene. Lifestyle conditions have a negative effect on the psychological and mental health of individuals, as there has been an increase in the rates of psychological stress, panic attacks, depression, violence and sleep disorders. Quarantines also have a negative impact on the socio-economic sector, as unemployment and poverty rates have risen worldwide due to industrial production arrest and closure of businesses. Additionally, the epigenetic effect of the undergoing tension due to the pandemic and social lockdowns can cause a long-term negative effects on human behavior and physiology. However, lockdowns and quarantines have a positive impact on the environment and energy saving due to limited human activity and transport. Thus, the aim of the present review article was to record the impact of lockdowns on the health, physical and mental, of people as well as on society and the environment.
Langat virus is a member of the Flaviviridae family and a close relative of a group of important tick-borne viruses that cause human encephalitis. RNA-dependent RNA polymerase is a significant component of the replication mechanism of the Flaviviridae viral family. In the present work, a three-dimensional model of the Langat virus RNA-dependent RNA polymerase was designed through homology modeling. The experimentally determined structure of the RNA-dependent RNA polymerase of Dengue virus type II, another member of the same viral family, was employed as template for the homology modeling process. The resulting model underwent a series of optimisations and its quality was verified using the Verify3D algorithm. Important functional characteristics of the family of viral RNA-dependent RNA polymerases were identified in the generated model, thus affirming the potential for its use in the possible design of anti-viral agents for Langat virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.