PurposeCollagen 1A1 (COL1A1), RNA-binding and pre-mRNA Processing Factor (PRPF40A), and Uncoupling Protein 2 (UCP2) were identified as downstream effectors of cytoglobin (CYGB), which was shown implicated in tumour biology. Although these three genes have been previously associated with cancer, little is known about their status in lung malignancies.MethodsHereby, we investigated the expression and promoter methylation of COL1A1, PRPF40A, and UCP2 in 156 non-small cell lung cancer (NSCLC) and adjacent normal tissues.ResultsWe demonstrate that COL1A1 and PRPF40A mRNAs are significantly overexpressed in NSCLC (p < 1 × 10−4), while UCP2 exhibits a trend of upregulation (p = 0.066). Only COL1A1 promoter revealed hypermethylation in NSCLCs (36%), which was particularly evident in squamous cell carcinomas (p = 0.024) and in the tumours with moderate-to-good differentiation (p = 0.01). Transcript level of COL1A1, as well as PRPF40A and UCP2, exhibited striking association (p ≤ 0.001) with the expression of hypoxia markers. In addition, we demonstrate in lung cancer cell lines exposed to hypoxia or oxidative stress that COL1A1 transcription significantly responds to oxygen depletion, while other genes showed the modest upregulation in stress conditions.ConclusionIn conclusion, our data revealed that COL1A1, UCP2, and PRPF40A are novel players implicated in the complex network of hypoxia response in NSCLC.
Cytoglobin (CYGB) is frequently downregulated in many types of human malignancies, and its exogenous overexpression reduces proliferation of cancer cells. Despite its implied tumour suppressor (TSG) functions, its exact role in carcinogenesis remains unclear as CYGB upregulation is also associated with tumour hypoxia and aggressiveness. In this study, we explore the TSG role of CYGB, its influence on the phenotype of cancerous cells under stress conditions and the clinical significance of CYGB expression and promoter methylation in non-small cell lung cancer (NSCLC). DNA methylation-dependent expression silencing of CYGB is demonstrated in both clinical samples and cell lines. CYGB promoter was more frequently methylated in lung adenocarcinomas (P = 1.4 × 10(-4)). Demethylation by 5'-azadeoxycytidine partially restored CYGB expression in cell lines. Interestingly, trichostatin A triggered upregulation of CYGB expression in cancer cell lines and downregulation in non-tumourigenic ones. CYGB mRNA expression in NSCLC surgical specimens correlated with that of HIF1α and VEGFa (P < 1 × 10(-4)). Overexpression of CYGB in cancer cell lines reduced cell migration, invasion and anchorage-independent growth. Moreover, CYGB impaired cell proliferation, but only in the lung adenocarcinoma cell line (H358). Upon hydrogen peroxide treatment, CYGB protected cell viability, migratory potential and anchorage independence by attenuating oxidative injury. In hypoxia, CYGB overexpression decreased cell viability, augmented migration and anchorage independence in a cell-type-specific manner. In conclusion, CYGB revealed TSG properties in normoxia but promoted tumourigenic potential of the cells exposed to stress, suggesting a bimodal function in lung tumourigenesis, depending on cell type and microenvironmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.