Larval growth and survival of catfishes are largely influenced by the various biotic and abiotic factors. The present study investigated the effect of different light intensities and photoperiods on growth and survival of Ompok bimaculatus larvae. Three separate trials of 21 days each were carried out in an aquarium tank. The first trial investigated the embryonic changes (based on hatching rate and time) upon exposure to varied light intensity (0, 300, 500, 900 and 1200 lx) and photoperiodic regime (24l:0d, 16l:8d, 12l:12d, 8l:16d and 0l:24d). Subsequently, hatched‐out larvae were subjected to the aforementioned intensities (Trial II) and photoperiod (Trial III, intensity of 300 lx) for growth and survival attributes. Eight hundred healthy larvae (average body weight = 0.003 g) were randomly distributed into five treatment groups for the last two trials. Results suggest a higher embryo hatching rate and larval survival at 0 and 300 lx, whereas the largest larval growth was observed at 900 lx. In Trial III, survival was highest in 0l:24d and growth in 24l:0d and 16l:8d was higher (P < 0.05). Performance index was higher (P < 0.05) in both 0 and 300 lx light and decreased at higher intensities. The overall interpretation from the present study concludes that a completely dark rearing environment is recommended for better survival of O. bimaculatus although growth was compromised.
Two sequential indoor rearing trials each of 21 days duration were conducted to investigate the effect of light intensity and photoperiod respectively on the growth and survival of Ompok bimaculatus larvae. In first trial, five different light intensities viz. 0, 300, 500, 900, 1200 lx were applied randomly to 800 larvae (0.003 g; 0.51 cm) stocked in triplicate following a completely randomized design into aquarium (30.0 x 15.0 x 15.0 cm) tanks. Sequentially, in second trial, five photoperiod cycles (light: dark, L: D) namely, 24L: 0D, 16L: 8D, 12L: 12D, 8L: 16D and 0L: 24D in combination with the best performing light intensity (300 lx) as observed from the first trial were employed in triplicates in similar set up. From the first trial, significantly higher survival was observed in 0 and 300 lx, whereas growth was highest in 900 lx (P < 0.05). In the second trial, survival was higher in continuous darkness (0L: 24D), whereas, maximum growth was recorded in 24L: 0D and 16L: 8D groups (P < 0.05). Performance index (PI) showed no significant difference (P > 0.05) among 0 and 300 lx light intensities, but were reduced at higher light intensities. The lowest PI was found in 12L: 12D and 8L: 16D condition but did not have any effect in other photoperiod cycles. Overall, from the present study it can be concluded that growth of the larvae is found to be higher in higher light intensity (900lx) and longer photoperiodic cycles (24L: 0D and 16L: 8D), however, better survival was recorded in total dark conditions suggesting that continuous dark condition is recommended for better hatchery performance of the larvae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.