SummaryShigella pathogenesis involves bacterial invasion of colonic epithelial cells and movement of bacteria through the cytoplasm and into adjacent cells by means of actin-based motility. The Shigella protein IcsA (VirG) is unipolar on the bacterial surface and is both necessary and sufficient for actin-based motility. IcsA is inserted into the outer membrane as a 120-kDa polypeptide that is subsequently slowly cleaved, thereby releasing the 95-kDa amino-terminal portion into the culture supernatant. IcsP, the major Shigella protease that cleaves IcsA, was identified and cloned. It has significant sequence similarity to the E. coli serine proteases, OmpP and OmpT. Disruption of icsP in serotype 2a S. flexneri leads to a marked reduction in IcsA cleavage, increased amounts of IcsA associated with the bacterium and altered distribution of IcsA on the bacterial surface. The icsP mutant displays significantly increased rates of actin-based motility, with a mean speed 27% faster than the wild-type strain; moreover, a significantly greater percentage of the icsP mutant moves in the cytoplasm. Yet, plaque formation on epithelial monolayers by the mutant was not altered detectably. These data suggest that IcsA, and not a host protein, is limiting in the rate of actinbased motility of wild-type serotype 2a S. flexneri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.