BackgroundPhaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris.ResultsHerein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60–85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies.ConclusionsWe present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0283-8) contains supplementary material, which is available to authorized users.
Receptor-like kinases (RLKs) are conserved upstream signaling molecules that regulate several biological processes, including plant development and stress adaptation. Cysteine (C)-rich receptor-like kinases (CRKs) are an important class of RLK that play vital roles in disease resistance and cell death in plants. Genome-wide analyses of CRK genes have been carried out in Arabidopsis and rice, while functional characterization of some CRKs has been carried out in wheat and tomato in addition to Arabidopsis. A comprehensive analysis of the CRK gene family in leguminous crops has not yet been conducted, and our understanding of their roles in symbiosis is rather limited. Here, we report the comprehensive analysis of the Phaseolus CRK gene family, including identification, sequence similarity, phylogeny, chromosomal localization, gene structures, transcript expression profiles, and in silico promoter analysis. Forty-six CRK homologs were identified and phylogenetically clustered into five groups. Expression analysis suggests that PvCRK genes are differentially expressed in both vegetative and reproductive tissues. Further, transcriptomic analysis revealed that shared and unique CRK genes were upregulated during arbuscular mycorrhizal and rhizobial symbiosis. Overall, the systematic analysis of the PvCRK gene family provides valuable information for further studies on the biological roles of CRKs in various Phaseolus tissues during diverse biological processes, including Phaseolus-mycorrhiza/rhizobia symbiosis.
Legumes participate in two important endosymbiotic associations, with phosphorus-acquiring arbuscular mycorrhiza (AM, soil fungi) and with nitrogen-fixing bacterial rhizobia. These divergent symbionts share a common symbiotic signal transduction pathway that facilitates the establishment of mycorrhization and nodulation in legumes. However, the unique and shared downstream genes essential for AM and nodule development have not been identified in crop legumes. Here, we used ion torrent next-generation sequencing to perform comparative transcriptomics of common bean (Phaseolus vulgaris) roots colonized by AM or rhizobia. We analyzed global gene expression profiles to identify unique and shared differentially expressed genes (DEGs) that regulate these two symbiotic interactions, and quantitatively compared DEG profiles. We identified 3,219 (1,959 upregulated and 1,260 downregulated) and 2,645 (1,247 upregulated and 1,398 downregulated) unigenes that were differentially expressed in response to mycorrhizal or rhizobial colonization, respectively, compared with uninoculated roots. We obtained quantitative expression profiles of unique and shared genes involved in processes related to defense, cell wall structure, N metabolism, and P metabolism in mycorrhized and nodulated roots. KEGG pathway analysis indicated that most genes involved in jasmonic acid and salicylic acid signaling, N metabolism, and inositol phosphate metabolism are variably expressed during symbiotic interactions. These combined data provide valuable information on symbiotic gene signaling networks that respond to mycorrhizal and rhizobial colonization, and serve as a guide for future genetic strategies to enhance P uptake and N-fixing capacity to increase the net yield of this valuable grain legume.
The target of rapamycin (TOR) protein kinase regulates metabolism, growth, and life span in yeast, animals, and plants in coordination with nutrient status and environmental conditions. The nutrient-dependent nature of TOR functionality makes this kinase a putative regulator of symbiotic associations involving nutrient acquisition. However, TOR's role in these processes remains to be understood. Here, we uncovered the role of TOR during the bean (Phaseolus vulgaris)-Rhizobium tropici (Rhizobium) symbiotic interaction. TOR was expressed in all tested bean tissues, with higher transcript levels in the root meristems and senesced nodules. We showed TOR promoter expression along the progressing infection thread and in the infected cells of mature nodules. Posttranscriptional gene silencing of TOR using RNA interference (RNAi) showed that this gene is involved in lateral root elongation and root cell organization and also alters the density, size, and number of root hairs. The suppression of TOR transcripts also affected infection thread progression and associated cortical cell divisions, resulting in a drastic reduction of nodule numbers. TOR-RNAi resulted in reduced reactive oxygen species accumulation and altered CyclinD1 and CyclinD3 expression, which are crucial factors for infection thread progression and nodule organogenesis. Enhanced expression of TORregulated ATG genes in TOR-RNAi roots suggested that TOR plays a role in the recognition of Rhizobium as a symbiont. Together, these data suggest that TOR plays a vital role in the establishment of root nodule symbiosis in the common bean.In plants, growth occurs as a result of cell growth coupled with cell proliferation and cell expansion caused by nutrient availability. Unlike animals, in plants, postembryonic growth is sustained by specialized zones (shoot meristems and root apices) and depends upon the availability of nutrients that are present externally or generated by various cellular processes. These local and systemic nutrient and energy sources are integrated, and information is communicated to metabolic regulators through signaling networks to control cellular processes.The evolutionarily conserved target of rapamycin (TOR) is a Ser/Thr kinase that acts as a master regulator of metabolism and growth. In mammals, TOR exerts translational control of cell proliferation (Dowling et al., 2010), tumorigenesis, metastasis (Hsieh et al., 2012), and insulin signaling (Hsu et al., 2011). Loss-of-function TOR mutations in Saccharomyces cerevisiae and Schizosaccharomyces pombe (Barbet et al., 1996;Weisman and Choder, 2001), Drosophila melanogaster (Zhang et al., 2000), Caenorhabditis elegans (Long et al., 2002), and mice (Murakami et al., 2004) resulted in embryo lethality and other growth-associated problems.Unlike other eukaryotes, knowledge about TOR in plants is limited due to a lack of molecular and biochemical assays for endogenous TOR kinase activity.
Nitrogen-limited conditions are considered to be a prerequisite for legume-rhizobial symbiosis, but the effects of nitrate-rich conditions on symbiotic status remain poorly understood. We addressed this issue by examining rhizobial (Rhizobim tropici) and arbusclar mycorrhizal (Glomus intraradices) symbiosis in Phaseolus vulgaris L. cv. Negro Jamapa under nitrate pre-incubation and continuous nitrate conditions. Our results indicate that nitrate pre-incubation, independent of the concentration, did not affect nodule development. However, the continuous supply of nitrate at high concentrations impaired nodule maturation and nodule numbers. Low nitrate conditions, in addition to positively regulating nodule number, biomass, and nitrogenase activity, also extended the span of nitrogen-fixing activity. By contrast, for arbuscular mycorrhizae, continuous 10 and 50 mmol/L nitrate increased the percent root length colonization, concomitantly reduced arbuscule size, and enhanced ammonia transport without affecting phosphate transport. Therefore, in this manuscript, we have proposed the importance of nitrate as a positive regulator in promoting both rhizobial and mycorrhizal symbiosis in the common bean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.