Many organs with a high cell turnover (for example, skin, intestine and blood) are composed of short-lived cells that require continuous replenishment by somatic stem cells1,2. Ageing results in the inability of these tissuesto maintain homeostasis and it is believed that somatic stem-cell ageing is one underlying cause of tissue attrition with age or age-related diseases. Ageing of haematopoietic stem cells (HSCs) is associated with impaired haematopoiesis in the elderly3–6. Despite a large amount of data describing the decline of HSC function on ageing, the molecular mechanisms of this process remain largely unknown, which precludes rational approaches to attenuate stem-cell ageing. Here we report an unexpected shift from canonical to non-canonical Wnt signalling in mice due to elevated expression of Wnt5a in aged HSCs, which causes stem-cell ageing. Wnt5a treatment of young HSCs induces ageing-associated stem-cell apolarity, reduction of regenerative capacity and an ageing-like myeloid–lymphoid differentiation skewing via activation of the small Rho GTPase Cdc42. Conversely, Wnt5a haploinsufficiency attenuates HSC ageing, whereas stem-cell-intrinsic reduction of Wnt5a expression results in functionally rejuvenated aged HSCs. Our data demonstrate a critical role for stem-cell-intrinsicnon-canonical Wnt5a signalling in HSC ageing.
SUMMARY Although intestinal homeostasis is maintained by intestinal stem cells (ISCs), regeneration is impaired upon aging. Here, we first uncover changes in intestinal architecture, cell number, and cell composition upon aging. Second, we identify a decline in the regenerative capacity of ISCs upon aging because of a decline in canonical Wnt signaling in ISCs. Changes in expression of Wnts are found in stem cells themselves and in their niche, including Paneth cells and mesenchyme. Third, reactivating canonical Wnt signaling enhances the function of both murine and human ISCs and, thus, ameliorates aging-associated phenotypes of ISCs in an organoid assay. Our data demonstrate a role for impaired Wnt signaling in physiological aging of ISCs and further identify potential therapeutic avenues to improve ISC regenerative potential upon aging.
The molecular pathogenesis of the myeloid leukemias that frequently occur in patients with Fanconi anemia (FA) is not well defined. Hematopoietic stem cells bearing inactivating mutations of FA complementation group C (FANCC) are genetically unstable and hypersensitive to apoptotic cytokine cues including IFN-gamma and TNF-alpha, but neoplastic stem cell clones that arise frequently in vivo are resistant to these cytokines. Reasoning that the combination of genetic instability and cytokine hypersensitivity might create an environment supporting the emergence of leukemic stem cells, we tested the leukemia-promoting effects of TNF-alpha in murine stem cells. TNF-alpha exposure initially profoundly inhibited the growth of Fancc-/- stem cells. However, longer-term exposure of these cells promoted the outgrowth of cytogenetically abnormal clones that, upon transplantation into congenic WT mice, led to acute myelogenous leukemia. TNF-alpha induced ROS-dependent genetic instability in Fancc-/- but not in WT cells. The leukemic clones were TNF-alpha resistant but retained their characteristic hypersensitivity to mitomycin C and exhibited high levels of chromosomal instability. Expression of FANCC cDNA in Fancc-/- stem cells protected them from TNF-alpha-induced clonal evolution. We conclude that TNF-alpha exposure creates an environment in which somatically mutated preleukemic stem cell clones are selected and from which unaltered TNF-alpha-hypersensitive Fancc-/- stem cells are purged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.