This paper is associated with the problem of robust stability of discrete-time systems with time-varying delays and finite wordlength nonlinearities. The main contribution of the paper is two-fold. First, this paper presents a new Lyapunov function based on the idea of partitioning the delay interval into subintervals. The approach may be considered as an advancement over the several existing approaches where only the lower delay bound is partitioned. The second is that reciprocally convex inequality (RCI) and Wirtinger-based inequality (WBI) are used to estimate the sum terms involved in the forward difference of Lyapunov function. The intermediate delay is also included in the Lyapunov function to deal with the delay information more effectively. Finally, several examples are provided to illustrate the less conservatism of the proposed approach as compared to several existing results.
This paper proposes a novel criterion for suppressing the [Formula: see text] overflow oscillations in fixed point state-space digital filters employing saturation nonlinearities and external interference. The proposed criterion can be used to ensure the exponential stability (ES) and diminish the external interference effects to an [Formula: see text] norm constraint. An example is given to exemplify the utility of the obtained results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.