We report an ultrahigh-speed and high-resolution line-scan spectral-domain optical coherence tomography (SD-OCT) system that integrates a number of mechanisms for improving image quality. The illumination uniformity is significantly improved by the use of a Powell lens; Phase stepping and differential reconstruction are combined to suppress autocorrelation artifacts; Nonlocal means (NLM) is employed to enhance the signal to noise ratio while minimizing motion artifacts. The system is capable of acquiring cross-sectional images at more than 3,500 B-scans per second with sensitivities between 70dB and 90dB. The high B-scan rate enables image post-processing with nonlocal means, an advanced noise reduction algorithm that affords enhanced morphological details and reduced motion artifacts. The achieved axial and lateral resolutions are 2.0 and 6.2 microns, respectively. We have used this system to acquire four-dimensional (three-dimensional space and one-dimensional time) imaging data from live chicken embryos at up to 40 volumes per second. Dynamic cardiac tissue deformation and blood flow could be clearly visualized at high temporal and spatial resolutions, providing valuable information for understanding the mechanical and fluid dynamic properties of the developing cardiac system.
Spread spectrum time-resolved diffuse optical measurement system for enhanced sensitivity in detecting human brain activity," J. Biomed. Opt. Abstract. Diffuse optical spectroscopy (DOS) and imaging methods have been widely applied to noninvasive detection of brain activity. We have designed and implemented a low cost, portable, real-time one-channel timeresolved DOS system for neuroscience studies. Phantom experiments were carried out to test the performance of the system. We further conducted preliminary human experiments and demonstrated that enhanced sensitivity in detecting neural activity in the cortex could be achieved by the use of late arriving photons. © The Authors.Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Optical coherence tomography (OCT) is a widely used structural imaging method. However, it has limited use in molecular imaging due to the lack of an effective contrast mechanism. Gold nanoparticles have been widely used as molecular probes for optical microcopy based on Surface Plasmon Resonance (SPR). Unfortunately, the SPR enhanced backscattering from nanoparticles is still relatively weak compared with the background signal from microscopic structures in biological tissues when imaged with OCT. Consequently, it is extremely challenging to perform OCT imaging of conventional nanoparticles in thick tissues with sensitivity comparable to that of fluorescence imaging. We have discovered and demonstrated a novel approach towards remarkable contrast enhancement, which is achieved by the use of a circular-polarization optical coherence microscopy system and 3-dimensional chiral nanostructures as contrast agents. By detecting the circular intensity differential depolarization (CIDD), we successfully acquired high quality images of single chiral nanoparticles underneath a 1-mm-thick tissue -mimicking phantom.
Optical coherence tomography (OCT) is a widely used morphological imaging modality. Various contrast agents, which change localized optical properties, are used to extend the applicability of OCT, where intrinsic contrast is not sufficient. In this paper we propose the use of a dual-rod gold nano-structure as a polarization sensitive contrast agent. Using numerical simulation, we demonstrated that the proposed structure has tunable chiral response. Enhanced cross-section due to Plasmon resonance in gold nanoparticles, along with the chiral behavior can provide enhanced detection sensitivity. The proposed contrast agents may extend the applicability of OCT to the problems that require the molecular contrast with enhanced sensitivity.
Time-domain diffuse optical measurement systems determine depth-resolved absorption changes by using the time of flight distribution of the detected photons. It is well known that certain feature data, such as the Laplace transform of the temporal point spread function, is sufficient for image reconstruction and diffuse optical sensing. Conventional time-domain systems require the acquisition of full temporal profiles of diffusive photons and then numerically compute the feature dataset, for example, Laplace transformed intensities for imaging applications. We have proposed a novel method for directly obtaining the Laplace transform data. Our approach can significantly improve the data acquisition speed for time-domain diffuse optical imaging. We also demonstrated that the use of negative Laplace parameters can provide enhanced sensitivity to perturbations located in deep regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.