Ashwagandha (Withania somnifera) is a very well-known herbal medicine and it was well studied for its active metabolites throughout the World. Although, nearly 40 withanolides were isolated from W. somnifera root extract, still there is remaining unidentified metabolites due to very low abundance and geographical variation. Advanced separation technology with online identification by mass and nuclear magnetic resonance (NMR) are nowadays used to find out the new compounds in the crude herbal extract. This article described the metabolite profiling of ashwagandha root hydroalcoholic extract using ultra-performance liquid chromatography coupled with a positive ion electrospray ionization tandem mass spectrometry through gas chromatography mass spectrometry (GC/MS) and NMR spectroscopy. A total of 43 possible withanolides was identified and proposed their structures based on the mass of molecular and fragment ions. GC/MS and NMR analysis indicated the presence of several known withanolides including withaferin A, withanolide D, withanoside IV or VI, withanolide sulfoxide, etc. To the best of our knowledge, dihydrowithanolide D at m/z 473 (t 7.86 min) and ixocarpalactone A at m/z 505 (t 8.43 min) were first time identified in the ashwagandha root hydroalcoholic extract. The current study that described the identification of withanolides with summarized literature review might be helpful for designing the experiment to identify of the new chemical constituents in Withania species.
Methyl-2-napthylether (nerolin) is an organic compound and has the applications in pharmaceutical, and perfume industry. The stable isotope ratio analysis is increasing importance in various field of scientific research. The objective of the current study was to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of P M+1 /P M (2 H/ 1 H or 13 C/ 12 C or 17 O/ 16 O) and P M+2 /P M (18 O/ 16 O) in nerolin using the gas chromatography-mass spectrometry (GC-MS). The compound nerolin was divided into two parts-one part was control sample (untreated), and another part was considered as biofield energy treated sample which was received the biofield energy treatment through the unique biofield energy transmission process by Mr. Mahendra Kumar Trivedi (also known as The Trivedi Effect ®). The biofield energy treated nerolin was analyzed at different time intervals and were represented as T1, T2, T3, and T4 in order to understand the effect of the biofield energy treatment on isotopic abundance ratio with respect to the time. From the GC-MS spectral analysis, the presence of the molecular ion peak C 11 H 10 O + (m/z 158) along with major fragmented peaks C 10 H 7 O-(m/z 143), C 10 H 8 (m/z 128), C 9 H 7 + (m/z 115), C 7 H 5 + (m/z 89), C 5 H 3 + (m/z 63), C 4 H 3 + (m/z 51), and C 3 H 3 + (m/z 39) were observed in both control and biofield treated samples. Only, the relative peak intensities of the fragmented ions in the biofield treated nerolin was notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis of nerolin using GC-MS revealed that the isotopic abundance ratio of P M+1 /P M in the biofield energy treated nerolin at T1, T2, T3, and T4 was increased by 0.17, 135.83, 9.13, and 25.57%, respectively as compared to the control sample. Likewise, the isotopic abundance ratio of P M+2 /P M at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, respectively in the biofield treated nerolin as compared to the control sample. Overall, the isotopic abundance ratios of P M+1 /P M (2 H/ 1 H or 13 C/ 12 C or 17 O/ 16 O) and P M+2 /P M (18 O/ 16 O) were significantly increased in the biofield energy treated sample as compared to the control sample with respect to the time. It is concluded that Mr. Trivedi's biofield energy treatment has the significant impact on alteration in isotopic abundance of nerolin as compared to the control sample. The biofield treated nerolin might display different altered physicochemical properties and rate of reaction and could be an important intermediate for the production of pharmaceuticals, chemicals, and perfumes in the industry.
Abstract:Withania somnifera (ashwagandha) root extract is a popular health supplement, with purported health benefits including prevention and treatment of various diseases, i.e. anxiety, stress, etc. The objective of this experiment was to evaluate the impact of Energy of Consciousness Healing Treatment (The Trivedi Effect ® ) on the characteristic properties of the phytoconstituents present in the ashwagandha root extract using LC-MS, GC-MS, and NMR spectroscopy. Ashwagandha root extract was divided into two parts -one part was control (without treatment), while another part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as the Biofield Energy Treated sample. The liquid chromatographic data of the control and Biofield Energy Treated samples revealed that the retention time of the 25 chromatographic peaks remained same, whereas the peak area% i.e. the relative amount of the phytoconstituents was altered significantly. The peak area% of the treated ashwagandha root extract representing the phytoconstituents was significantly decreased in the range of 6.02% to 39.74% at R t of 5. 2, 5.3, 5.4, 5.6, 5.7, 6.9, 7.1, 7.3, 7.8, 7.9, 8.0, and 8.5 minutes compared to the control sample. On the contrary, the peak area% of the other phytoconstituents present in the treated sample was significantly increased in the range of 4.12% to 82.32% at R t of 5. 1, 6.4, 6.6, 6.8, 8.1, 8.2, 8.4, 8.6, 8.8, 8.9, 9.0, 9.1, and 9.2 minutes, respectively compared to the control sample. A total of 16 withanolides such as sitoindoside IX, viscosa lactone B, dihydrowithanolide D, withanolide A, withaferin A, ixocarpalactone A, withanolide sulfoxide, etc. were proposed from the molecular mass at m/z 605, 489, 473, 471, 505, and 992 at the retention times of 6.9, 7.1, 7.8, 8.2, 8.5, and 9.2 minutes with the help of LC-MS, GC-MS and NMR data of both the samples. Subsequently, the mass peak intensities of the treated sample were significantly changed in the range of -61.24% to 106.61% compared with the control sample at the same retention time. These findings suggest that Energy of Consciousness Healing Treatment could be advantageous for altering the concentration of the phytoconstituents in the ashwagandha root extract by modifying their intrinsic physicochemical properties, which might be helpful to improve the bioavailability of active constituents of ashwagandha extract that might provide better therapeutic response against inflammatory diseases, immunological disorders, European Journal of Biophysics 2017; 5(2): 38-47 39 arthritis, stress, cancer, diabetes, sexual disorders, aging, and other chronic infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.