Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10–20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish.
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC + myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.