The demand for natural aggregates (river sand) is increasing day by day, leading to the destruction of the environment, a burden that will be passed on to young people. Further, wastes from various industries are being dumped in landfills, which poses serious environmental problems. In order to ensure sustainability, both the issues mentioned above can be solved by utilizing industrial waste as aggregate replacement in the concrete construction industry. This research is done to find out the results using two substances viz., waste foundry sand (WFS) and coconut shell (CS) substitute for river sand and coarse aggregate. Many researchers have found the maximum benefits of substituted substances used in cement, which has material consistency. This current observation explores these strong waste properties of waste-infused concrete and cement, which experience shrinkage from drying out. The replacement levels for waste foundry sand were varied, between 10%, 20%, and 30%, and for CS, it was 10% and 20%. The experimental outcomes are evident for the strength, which increases by using WFS, whereas the strength decreases by increasing the CS level. The concrete that experiences shrinkage from drying out is included in the waste material, showing a higher magnitude of drying shrinkage than conventional concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.