Summary Reactive oxygen species (ROS) activate NF-E2-related transcription factor 2 (Nrf2), a key transcriptional regulator driving antioxidant gene expression and protection from oxidant injury. Here we report that in response to elevation of intracellular ROS above a critical threshold, Nrf2 stimulates expression of transcription Kruppel-like factor 9 (Klf9), resulting in further Klf9-dependent increases in ROS and subsequent cell death. We demonstrated that Klf9 independently causes increased ROS levels in various types of cultured cells and in mouse tissues and is required for pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Mechanistically, Klf9 binds to the promoters and alters the expression of several genes involved in the metabolism of ROS, including suppression of thioredoxin reductase 2, an enzyme participating in ROS clearance. Our data reveal an Nrf2-dependent feed-forward regulation of ROS and identify Klf9 as a novel ubiquitous regulator of oxidative stress and lung injury.
In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.
SUMMARY Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was down-regulated in invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR down-regulates the amounts of several GTP-bound (active) RHO-GTPases, suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix and invade in vitro and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed, whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identified GMPR as a melanoma invasion suppressor, and established a link between guanosine metabolism and RHO-GTPase-dependent melanoma cell invasion.
Bortezomib, a therapeutic agent for multiple myeloma (MM) and mantle cell lymphoma, suppresses proteosomal degradation leading to substantial changes in cellular transcriptional programs and ultimately resulting in apoptosis. Transcriptional regulators required for bortezomibinduced apoptosis in MM cells are largely unknown. Using gene expression profiling, we identified 36 transcription factors that displayed altered expression in MM cells treated with bortezomib. Analysis of a publically available database identified Kruppel-like family factor 9 (KLF9) as the only transcription factor with significantly higher basal expression in MM cells from patients who responded to bortezomib compared with nonresponders. We demonstrated that KLF9 in cultured MM cells was up-regulated by bortezomib; however, it was not through the induction of endoplasmic reticulum stress. Instead, KLF9 levels correlated with bortezomib-dependent inhibition of histone deacetylases (HDAC) and were increased by the HDAC inhibitor LBH589 (panobinostat). Furthermore, bortezomib induced binding of endogenous KLF9 to the promoter of the proapoptotic gene NOXA. Importantly, KLF9 knockdown impaired NOXA up-regulation and apoptosis caused by bortezomib, LBH589, or a combination of theses drugs, whereas KLF9 overexpression induced apoptosis that was partially NOXA-dependent. Our data identify KLF9 as a novel and potentially clinically relevant transcriptional regulator of drug-induced apoptosis in MM cells. (Blood. 2012;119(6):1450-1458) IntroductionMultiple myeloma (MM) is a plasma cell disorder that accounts for approximately 10% of all hematologic malignancies. 1,2 Although the introduction of novel agents in the past decade has increased median overall survival of myeloma patients from 30 months to 45-72 months, the disease still remains incurable. [3][4][5] One of these agents, bortezomib (Velcade, PS-341), significantly increased overall survival in patients with relapsed or refractory multiple myeloma when used as a single agent in comparison to high-dose dexamethasone, one of the standard therapies for this disease. [1][2][3][4][5] Bortezomib acts via inhibition of proteasome-mediated protein degradation, ultimately causing death in cells from many types of malignancies, including MM cells. [3][4][5] Bortezomib apoptosisinducing activity has been attributed in part to the alterations in the expression of several BCL2 family proteins, 6 among which the BH3-only protein NOXA appears to play an important role. [7][8][9] NOXA triggers apoptosis by binding to the prosurvival molecule MCL1, thus preventing it from sequestering proteins BAX, BAK and BIM, which are all critical inducers of apoptosis. [9][10][11][12] It has been reported that bortezomib increases NOXA protein levels by suppressing its proteosomal degradation 8 and by transcriptional activation of its gene. 8,13 Recently, several transcription factors including C-MYC, 13,14 ATF3, 15 ATF4, 15,16 and p53 14 have been shown to functionally participate in bortezomib-induced death in cells ...
It is generally accepted that intracellular oxidative stress induced by proteasome inhibitors is a byproduct of endoplasmic reticulum (ER) stress. Here, we report a mechanism underlying the ability of proteasome inhibitors bortezomib (BTZ) and carfilzomib (CFZ) to directly induce oxidative and ER stresses in multiple myeloma (MM) cells via transcriptional repression of a gene encoding mitochondrial thioredoxin reductase (TXNRD2). TXNRD2 is critical for maintenance of intracellular red-ox status and detoxification of reactive oxygen species. Depletion of TXNRD2 to the levels detected in BTZ- or CFZ-treated cells causes oxidative stress, ER stress and death similar to those induced by proteasome inhibitors. Reciprocally, restoration of near-wildtype TXNRD2 amounts in MM cells treated with proteasome inhibitors reduces oxidative stress, ER stress and cell death by ~46%, ~35% and ~50%, respectively, compared to cells with unrestored TXNRD2 levels. Moreover, cells from three MM cell lines selected for resistance to BTZ demonstrate elevated levels of TXNRD2, indirectly confirming its functional role in BTZ resistance. Accordingly, ectopic expression of TXNRD2 in MM cell xenografts in immunocompromised mice blunts therapeutic effects of BTZ. Our data identify TXNRD2 as a potentially clinically relevant target, inhibition of which is critical for proteasome inhibitor-dependent cytotoxicity, oxidative stress, and ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.