Adaptation of rice to the aerobic condition is needed to cope with the water scarcity as well as to ensure sustainable yield in future. To understand the molecular mechanisms responsible for aerobic adaptation in rice, we performed RNA-seq analysis of root and shoot i.e. developing panicle tissues at panicle initiation stage in two cultivars adapted to aerobic (CR Dhan 202) and traditional transplanted anaerobic (BPT 5204) conditions. The RNA-seq data emanated from 1.65 billion clean reads with approximately 37 million reads per sample. The number of differentially expressed transcripts was higher in the root than that in the shoot under both aerobic and anaerobic conditions. The transcription factors viz . MADS4, MADS5, MADS6, MADS7, MADS15 and transporters involved in sugar (SWEET3A) and nutrient uptake (PHT1;6, MDR-like ABC and vacuolar iron transporter homolog 2) were highly and uniquely expressed in the aerobic adapted cultivar (AAC) CR Dhan 202 under aerobic condition indicating their role in adaptation. The hormones such as ethylene and abscisic acid might be significantly involved in imparting aerobic adaptation. The higher expression of root related genes in the AAC under aerobic conditions suggests the involvement and sensitivity of roots to the water limiting condition. The metabolic activities are also more pronounced in the roots which impart rigorous plant establishment under the aerobic condition. The presence of alternative splice variants in the transcripts viz . Tetratrico peptide repeat (TPR) domain containing protein and GOLDEN2-LIKE1 (GLK1) additionally confirms that post transcriptional regulation is also crucial for aerobic adaptation. The QTLs related to root traits and stress tolerance harboring the uniquely expressed genes, which were identified in the present study can be deployed in molecular breeding programs to develop elite, high yielding aerobic rice cultivars.
Creation of variation in existing gene pool of crop plants is the foremost requirement in crop improvement programmes. Genome editing is a tool to produce knock out of target genes either by introduction of insertion or by deletion that disrupts the function of a specific gene. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system is the most recent addition to the toolbox of sequence-specific nucleases that includes ZFNs and TALENs. The CRISPR/Cas9 system allows targeted cleavage of genomic DNA guided by a small noncoding RNA, resulting in gene modifications by both non-homologous end joining and homology-directed repair mechanisms. Here, we present an overview of mechanisms of CRISPR, its potential roles in creating variation in germplasm and applications of this novel interference pathway in crop improvement. The availability of the CRISPR/Cas9 system holds promise in facilitating both forward and reverse genetics and will enhance research in crops that lack genetic resources.
RNA-Seq technology was used to analyze the transcriptome of two rice hybrids, Ajay (based on wild-abortive (WA)-cytoplasm) and Rajalaxmi (based on Kalinga-cytoplasm), and their respective parents at the panicle initiation (PI) and grain filling (GF) stages. Around 293 and 302 million high quality paired-end reads of Ajay and Rajalaxmi, respectively, were generated and aligned against the Nipponbare reference genome. Transcriptome profiling of Ajay revealed 2814 and 4819 differentially expressed genes (DEGs) at the PI and GF stages, respectively, as compared to its parents. In the case of Rajalaxmi, 660 and 5264 DEGs were identified at PI and GF stages, respectively. Functionally relevant DEGs were selected for validation through qRT-PCR, which were found to be co-related with the expression patterns to RNA-seq. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated significant DEGs enriched for energy metabolism pathways, such as photosynthesis, oxidative phosphorylation, and carbon fixation, at the PI stage, while carbohydrate metabolism-related pathways, such as glycolysis and starch and sucrose metabolism, were significantly involved at the GF stage. Many genes involved in energy metabolism exhibited upregulation at the PI stage, whereas the genes involved in carbohydrate biosynthesis had higher expression at the GF stage. The majority of the DEGs were successfully mapped to know yield related rice quantitative trait loci (QTLs). A set of important transcription factors (TFs) was found to be encoded by the identified DEGs. Our results indicated that a complex interplay of several genes in different pathways contributes to higher yield and vigor in rice hybrids.
Crop improvement is a continuous process in agriculture which ensures ample supply of food, fodder and fiber to burgeoning world population. Despite tremendous success in plant breeding and transgenesis to improve the yield-related traits, there have been several limitations primarily with the specificity in genetic modifications and incompatibility of host species. Because of this, new breeding techniques (NBTs) are gaining worldwide attention for crop improvement programs. Among the NBTs, genome editing (GE) using site-directed nucleases (SDNs) is an important and potential technique that overcomes limitations associated with classical breeding and transgenesis. These SDNs specifically target a compatible region in the gene/genome. The meganucleases (MgN), zinc finger nucleases (ZFN), transcription activator-like effectors nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated endonuclease (Cas) are being successfully employed for GE. These can be used for desired or targeted modifications of the native endogenous gene(s) or targeted insertion of / elements in the genomes of recipient organisms. Applications of these techniques appear to be endless ever since their discovery and several modifications in original technologies have further brought precision and accuracy in these methods. In this review, we present an overview of GE using SDNs with an emphasis on CRISPR/Cas system, their advantages, limitations and also practical considerations while designing experiments have been discussed. The review also emphasizes on the possible applications of CRISPR for improving economic traits in crop plants.
The yellow stem borer (YSB), Scirpophaga incertulas, is a prominent pest in rice cultivation causing serious yield losses. The larval stage is an important stage in YSB, responsible for maximum infestation. However, limited knowledge exists on the biology and mechanisms underlying the growth and differentiation of YSB. To understand and identify the genes involved in YSB development and infestation, so as to design pest control strategies, we performed de novo transcriptome analysis at the first, third, fifth, and seventh larval developmental stages employing Illumina Hi-seq. High-quality reads (HQR) of ∼229 Mb were assembled into 24,775 transcripts with an average size of 1485 bp. Genes associated with various metabolic processes, i.e., detoxification mechanism [CYP450, GSTs, and carboxylesterases (CarEs)], RNA interference (RNAi) machinery (Dcr-1, Dcr-2, Ago-1, Ago-2, Sid-1, Sid-2, Sid-3, and Sid-1-related gene), chemoreception (CSPs, GRs, OBPs, and ORs), and regulators [transcription factors (TFs) and hormones] were differentially regulated during the developmental stages. Identification of stage-specific transcripts made it possible to determine the essential processes of larval development. Comparative transcriptome analysis revealed that YSB has not evolved much with respect to the detoxification mechanism, but showed the presence of distinct RNAi machinery. The presence of strong specific visual recognition coupled with chemosensory mechanisms supports the monophagous nature of YSB. Designed expressed sequenced tags-simple-sequence repeats (EST-SSRs) will facilitate accurate estimation of the genetic diversity of YSB. This is the first report on characterization of the YSB transcriptome and the identification of genes involved in key processes, which will help researchers and industry to devise novel pest control strategies. This study also opens up a new avenue to develop next-generation resistant rice using RNAi or genome editing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.