We describe the genetic diversity of 1327 Brucella strains from human patients in Kazakhstan using multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA). All strains were assigned to the Brucella melitensis East Mediterranean group and clustered into 16 MLVA11 genotypes, nine of which are reported for the first time. MLVA11 genotype 116 predominates (86.8%) and is present all over Kazakhstan indicating existence and temporary preservation of a “founder effect” among B. melitensis strains circulating in Central Eurasia. The diversity pattern observed in humans is highly similar to the pattern previously reported in animals. The diversity observed by MLVA suggested that the epidemiological status of brucellosis in Kazakhstan is the result of the introduction of a few lineages, which have subsequently diversified at the most unstable tandem repeat loci. This investigation will allow to select the most relevant strains for testing these hypotheses via whole genome sequencing and to subsequently adjust the genotyping scheme to the Kazakhstan epidemiological situation.
BackgroundKazakhstan belongs to countries with a high level of brucellosis among humans and farm animals. Although antibiotic therapy is the main way to treat acute brucellosis in humans there is still little information on a circulation of the antibiotic-resistant Brucella strains in the Central Eurasia. In this article we describe an occurrence of the drug resistance of Brucella melitensis isolates in Kazakhstan which is among the largest countries of the region.MethodsSusceptibilities to tetracyclin, gentamycin, doxycyclin, streptomycin and rifampicin were investigated in 329 clinical isolates of Brucella melitensis using E-test method.ResultsAll isolates were susceptible to streptomycin, tetracycline and doxycycline. 97.3% of the Brucella isolates were susceptible to gentamycin, although only 37.4% of isolates were susceptible to rifampicin. 21.9% of isolates had intermediate resistance, and 26.4% of isolates were resistant to this antibacterial drug.ConclusionIsolates of Brucella melitensis circulating in Kazakhstan are susceptible to streptomycin, doxicyclin, tetracyclin and gentamycin. At the same time the resistance to rifampicin is widespread, almost half of the isolates were rifampicin-resistant (including the intermediate resistance).
As a result of the work performed, the conditions for setting up multiplex PCR with electrophoretic detection for the diagnosis of horse strangles were determined, allowing the identification and differentiation of S. equi subsp. equi in one reaction. It was found that the developed PCR protocol for the detection and species differentiation of S. equi subsp. equi with electrophoretic detection in a “multiplex” format has a high specificity and does not lead to amplification of PCR products with DNA of closely related microorganisms, saprophytic microflora, and bacterial pathogens. The sensitivity of the protocols for the detection and species differentiation of S. equi subsp. equi with electrophoretic detection was assessed. Diluted DNA samples of two S. equi subspecies were used as objects of research: S. equi subsp. equi and S. equi subsp. zooepidemicus. DNA samples were diluted by two-fold dilutions, starting from a concentration of 5 ng (which corresponds to 2 million 170 thousand copies in the genomic equivalent) to 1.19 * 10-6 ng (which corresponds to 0.71 copies in the genomic equivalent). DNA detection limit for S. equi subsp. equi was 66 copies in genomic equivalent or 152 fg, DNA of S. equi subsp. zooepidemicus – 132 copies in genomic equivalent or 305 fg.
Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.
In this work, we present the draft genome sequence of Komagataeibacter europaeus strain GH1, which is an extremely efficient biocellulose producer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.