The origin of millet from Neolithic China has generally been accepted, but it remains unknown whether common millet (Panicum miliaceum) or foxtail millet (Setaria italica) was the first species domesticated. Nor do we know the timing of their domestication and their routes of dispersal. Here, we report the discovery of husk phytoliths and biomolecular components identifiable solely as common millet from newly excavated storage pits at the Neolithic Cishan site, China, dated to between ca. 10,300 and ca. 8,700 calibrated years before present (cal yr BP). After ca. 8,700 cal yr BP, the grain crops began to contain a small quantity of foxtail millet. Our research reveals that the common millet was the earliest dry farming crop in East Asia, which is probably attributed to its excellent resistance to drought.Holocene ͉ origins of agriculture ͉ phytoliths ͉ Neolithic ͉ Cishan F oxtail millet (Setaria italica) and common millet (or broomcorn millet; Panicum miliaceum) were among the world's most important and ancient domesticated crops. They were staple foods in the semiarid regions of East
Sediment cores from Western Lake provide a 7000-yr record of coastal environmental changes and catastrophic hurricane landfalls along the Gulf Coast of the Florida Panhandle. Using Hurricane Opal as a modern analog, we infer that overwash sand layers occurring near the center of the lake were caused by catastrophic hurricanes of category 4 or 5 intensity. Few catastrophic hurricanes struck the Western Lake area during two quiescent periods 3400–5000 and 0–1000 14C yr B.P. The landfall probabilities increased dramatically to ca. 0.5% per yr during an “hyperactive” period from 1000–3400 14C yr B.P., especially in the first millennium A.D. The millennial-scale variability in catastrophic hurricane landfalls along the Gulf Coast is probably controlled by shifts in the position of the jet stream and the Bermuda High.
Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum) are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Ω-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.