Copper Indium Gallium Selenide- (CIGS-) based solar cells have become one of the most promising candidates among the thin film technologies for solar power generation. The current record efficiency of CIGS has reached 22.6% which is comparable to the crystalline silicon- (c-Si-) based solar cells. However, material properties and efficiency on small area devices are crucial aspects to be considered before manufacturing into large scale. The process for each layer of the CIGS solar cells, including the type of substrate used and deposition condition for the molybdenum back contact, will give a direct impact to the efficiency of the fabricated device. In this paper, brief introduction on the production, efficiency, etc. of a-Si, CdTe, and CIGS thin film solar cells and c-Si solar cells are first reviewed, followed by the recent progress of substrates. Different deposition techniques’ influence on the properties of molybdenum back contact for CIGS are discussed. Then, the formation and thickness influence factors of the interfacial MoSe2 layer are reviewed; its role in forming ohmic contact, possible detrimental effects, and characterization of the barrier layers are specified. Scale-up challenges/issues of CIGS module production are also presented to give an insight into commercializing CIGS solar cells.
Electric supply is listed as one of the basic amenities of sustainable development in Malaysia. Under this key contributing factor, the sustainable development goal aims to ensure universal access to an affordable, clean, and reliable energy service. To support the generation capacity in years to come, distributed generation is conceptualized through stages upon its implementation in the power system network. However, the rapid establishment growth of distributed generation technology in Malaysia will invoke power quality problems in the current power system network. In order to prevent this, the current government is committed to embark on the development of renewable technologies with the assurance of maintaining the quality of power delivered to consumers. Therefore, this research paper will focus on the review of the energy prospect of both fossil fuel and renewable energy generation in Malaysia and other countries, followed by power quality issues and compensation device under a high renewable penetration distribution network. The issues and challenges of distributed generation are presented, with a comprehensive discussion and insightful recommendation on future work of the distributed generation. In accordance with the addressed highlights in this paper, it would serve as the criterion on upcoming revolution of distributed generation integrated along with the traditional network in Malaysia.
Formation of MoOx barrier layer under atmospheric based condition to control MoSe2 formation in CIGS thin film solar cell As part of the device fabrication process, selenization step is required to crystallise the CIGS absorber layer. However, during high temperature selenization process, excessive formation of MoSe2 can lead to delamination of the film and adverse effect on electrical properties of the solar cells. In this paper, a new method is proposed to form a Molybdenum Oxide (MoOx) barrier layer in between of the Mo back contact using plasma jet under atmospheric based conditions. The effect of MoOx compound (MoO2 and MoO3) towards the efficiency of the device is investigated. It has been proven that a thin layer of MoOx barrier layer is able to control the formation of MoSe2 effectively and provide a significant improvement in electrical properties of the devices. A power conversion efficiency of 5.24% with least efficiency variation across the champion device was achieved which demonstrates the importance of this methodology on small area devices.
The stochastic behavior of PV together with high PV penetration have given rise to power quality concerns involving voltage dynamic issues such as undervoltage, overvoltage, sag and swell. To ensure the grid’s stability, various methods have been practiced such as a proper sizing of the grid lines and the installation of power quality compensation equipment. However, these measures often require high costs and high control complexity due to additional equipment being involved such as multiple transformers and inverters. Moreover, the current available reactive power compensation equipment has a lesser impact on distribution level networks. Therefore, this work proposes a hybrid control of grid-feeding mode and energy storage with Direct Current (DC) fault detection scheme utilizing fuzzy control to mitigate high PV penetration problems, PV intermittency and faults via active power compensation to maintain the system’s voltage within its nominal range. This hybrid control works on two mode of operations: strategic power dispatch by the grid-feeding mode to solve under and overvoltage caused by inconsistent PV generation. Meanwhile, the utilization of fuzzy control aims to solve PV intermittency and line faults. The novel hybrid control has proven its capability to solve voltage dynamic problems caused by high PV penetration, intermittency and faults in the network within a shorter timeframe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.