a b s t r a c tAdding biochar to soils and maintaining high earthworm biomasses are potential ways to increase the fertility of tropical soils and the sustainability of crop production in the spirit of agroecology and ecological engineering. However, a thorough functional assessment of biochar effect on plant growth and resource allocations is so far missing. Moreover, earthworms and biochar increase mineral nutrient availability through an increase in mineralization and nutrient retention respectively and are likely to interact through various other mechanisms. They could thus increase plant growth synergistically. This hypothesis was tested for rice in a greenhouse experiment. Besides, the relative effects of biochar and earthworms were compared in three different soil treatments (a nutrient rich soil, a nutrient poor soil, a nutrient poor soil supplemented with fertilization). Biochar and earthworm effects on rice growth and resource allocation highly depended on soil type and were generally additive (no synergy). In the rich soil, there were both clear positive biochar and earthworm effects, while there were generally only positive earthworm effects in the poor soil, and neither earthworm nor biochar effect in the poor soil with fertilization. The analysis of earthworm and biochar effects on different plant traits and soil mineral nitrogen content, confirmed that they act through an increase in nutrient availability. However it also suggested that another mechanism, such as the release in the soil of molecules recognized as phytohormones by plants, is also involved in earthworm action. This mechanism could for example help explaining how earthworms increase rice resource allocation to roots and influence the allocation to grains.
Earthworms are known to generally increase plant growth. However, because plant-earthworm interactions are potentially mediated by soil characteristics the response of plants to earthworms should depend on the soil type. In a greenhouse microcosm experiment, the responsiveness of plants (Veronica persica, Trifolium dubium and Poa annua) to two earthworm species (in combination or not) belonging to different functional groups (Aporrectodea. caliginosa an endogeic species, Lumbricus terrestris an anecic species) was measured in term of biomass accumulation. This responsiveness was compared in two soils (nutrient rich and nutrient poor) and two mineral fertilization treatments (with and without). The main significant effects on plant growth were due to the anecic earthworm species. L. terrestris increased the shoot biomass and the total biomass of T. dubium only in the rich soil. It increased also the total biomass of P. annua without mineral fertilization but had the opposite effect with fertilization. Mineral fertilization, in the presence of L. terrestris, also reduced the total biomass of V. persica. L. terrestris did not only affect plant growth. In P. annua and V. persica A. caliginosa and L. terrestris also affected the shoot/root ratio and this effect depended on soil type. Finally, few significant interactions were found between the anecic and the endogeic earthworms and these interactions did not depend on the soil type. A general idea would be that earthworms mostly increase plant growth through the enhancement of mineralization and that earthworm effects should decrease in nutrient-rich soils or with mineral fertilization. However, our results show that this view does not hold and that other mechanisms are influential.
Soil seed bank composition and dynamics are crucial elements for the understanding of plant population and community ecology. Among animal species earthworms are increasingly recognized as important dispersers and predators of seeds. Through direct and indirect effects, they influence either positively or negatively establishment and survival of seeds and seedlings. Seedling establishment is affected by a variety of earthworm-mediated mechanisms, such as selective ingestion and digestion of seeds, acceleration or deceleration of germination, and downward or upward seed transport. Earthworm casts deposited on the soil surface and the entrance of earthworm burrows often contain viable seeds and constitute important regeneration niches for plant seedlings and therefore likely favour specific plant traits. However, the role of earthworms as seed dispersers, mediators of seed bank dynamics and seed predators has not been considered in concert and therefore the overall effect of earthworms on plant communities remains little understood. Moreover, most knowledge is based on laboratory studies and future work has to explore the significance of earthwormseed interactions under more natural conditions. In this review we summarize the current knowledge on earthwormseed interactions and discuss factors determining theses interactions. We shed light on the consequences of earthworm-mediated impacts on soil seed banks, plant community dynamics and evolution. Special attention is paid to promising future research directions and consequences for restoration and conservation ecology. We conclude that earthwormseed interactions likely represent a crucial multitrophic interaction shaping plant community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.