The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8-2.4 nM·h −1 at 6 m, which could explain 33-44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. epilimnic methane peak | methanogens A lthough methane makes up <2 parts per million by volume (ppmv) of the atmosphere, it accounts for 20% of the total radiative forcing among all long-lived greenhouse gases (1). In the aquatic environments, methane is also an important substrate for microbial production (2). The prevailing paradigm is that microbial methanogenesis occurs primarily in anoxic environments (3, 4). A commonly observed paradox is methane accumulation in well-oxygenated waters (2, 5), which is often assumed to be the result of physical transport from anoxic sediment and water (6-8) or in situ production within microanoxic zones (9-11). Two recent studies challenged this paradigm and suggested that microbes in oligotrophic ocean can metabolize methylated compounds and release methane even aerobically (12, 13). These claims are not without caveats, because the amounts of methylated compounds added [1-10 μM methylphosphonate (12) and 50 μM dimethyl sulfoniopropionate (13)] were far higher than their environmental concentrations, and therefore, the ecological relevance remains obscure. Moreover, dissolved oxygen (DO) was not monitored during the long incubation (5-6 d), and the possibility that the experimental setups had become anoxic before methane production could not be dismissed.* Despite the unce...
Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling frequency, and turn angles) and the hydrodynamic environment (stationary versus sinking aggregates). We then experimentally tested the models with 10 strains of bacteria isolated from marine particles: two strains were nonmotile; the rest were swimming at 20 to 60 m s ؊1 with different tumbling frequency (0 to 2 s ؊1 ). The rates at which these bacteria colonized artificial aggregates (stationary and sinking) largely agreed with model predictions. We report several findings. Bacteria colonize marine aggregates where they grow and are preyed upon. Bacteria typically occur on aggregates in concentrations that are orders of magnitude higher than in the ambient water (10,11,40). They cause aggregates to solubilize and remineralize, apparently at high rates (1, 36, 37). Even if microbial processes on aggregates account for only a small fraction of the total microbial activity in the water column (4, 40), seepage of dissolved organic matter from degrading aggregates can affect microbial processes even outside the aggregates. For example, the few available estimates of leakage rates from aggregates suggest that aggregates may be quantitatively significant dissolved organic matter sources for free bacteria and that the solute plumes trailing behind sinking aggregates may be important sites of bacterial growth (19,23,39). Thus, marine aggregates are not only sinking vehicles but also important components of the pelagic food webs. Bacterial activities on aggregates are key to understanding this role.In resolving the population dynamics of bacteria on aggregates one needs to consider the rate at which bacteria colonize the aggregates. Several studies have described the succession of microbes on aggregates (19,26,36,41,43), but few have examined the colonization process at a relevant-i.e., short (minutes)-time scale (15), and none have adequately considered the effect of the flow environment on colonization. A significant fraction of pelagic bacteria are motile (15,18,30), and simulation models have shown that motility and chemosensing capability are important for colonization, even of sinking aggregate (21, 23). Here we develop encounter models to predict colonization rates based on observed motility patterns of the bacteria and the hydrodynamic environments. We then compare model predictions with empirical measurements by using artificial aggregates. MATERIALS AND METHODS Models of colonization.The change in the number of bacteria on an aggregate due to colonization, dN/dt, equals the transport of bacteria toward the aggregate, F, which in turn depends on the ambient concentration of bacteria, C,where  is the "encounter rate kernel," i.e., the imaginary volume of water from which the aggregate "collects" bacteria per unit time. ...
The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water was up to 5 mmol m 22 d 21 . Mid-water methane oversaturation was also observed in nine other lakes that collectively showed a strongly negative gradient of methane concentration within 0-20% dissolved oxygen (DO) in the bottom water, and a positive gradient within $ 20% DO in the upper water column. Further investigation into the responsible organisms and biochemical pathways will help improve our understanding of the global methane cycle.
Bacteria and metazoan zooplankton (mainly crustaceans) are often viewed as 2 separate functional groups in the pelagic food webs indirectly linked via nutrient cycling and trophic cascades. Yet a zooplankter's body carries a high abundance of diverse bacteria, often at an equivalent concentration orders of magnitude higher than the ambient bacterial concentration. Zooplankton bodies are organic-rich micro-environments that support fast bacterial growth. Their physical-chemical conditions differ from those in the surrounding water and therefore select for different bacterial communities, including anaerobic bacteria that otherwise may not thrive in a well-oxygenated water column. The zooplankton body provides protection to the associated bacteria from environmental stresses similar to biofilms. Furthermore, migration by zooplankton enables rapid dispersal of bacteria over vast distances and across boundaries such as the pycnocline. In addition to live zooplankton, molts, fecal pellets, and carcasses of zooplankton all influence water column and benthic microbial communities in various ways. We review the recent advances in the study of (crustacean) zooplankton-bacteria interactions and discuss future research opportunities and challenges. Traditional aquatic microbial ecology emphasizes free-living bacteria, which represent only a fraction of the microbial world. By transcending disciplinary boundaries, microbial ecologists and zooplankton ecologists can work together to integrate the two disciplines and advance our understanding in aquatic microbial ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.