Background Patients who undergo decompressive craniectomy (DC) are often fitted with a helmet that protects the craniectomy site from injury during rehabilitation. However, conventional “one-size-fits-all” helmets may not be feasible for certain craniectomy defects. We describe the production and use of a custom 3D-printed helmet for a DC patient where a conventional helmet was not feasible due to the craniectomy defect configuration. Case presentation A 65-year-old male with ethmoid sinonasal carcinoma underwent cranionasal resection and DC with free vastus lateralis flap reconstruction to treat cerebrospinal fluid leakage. He required an external helmet to protect the craniectomy site, however, the rim of a conventional helmet compressed the craniectomy site, and the straps compressed the vascular pedicle of the muscle flap. Computed topography (CT) scans of the patient’s cranium were imported into 3D modelling software and used to fabricate a patient-specific, strapless helmet using fused deposition modelling (FDM). The final helmet fit the patient perfectly and circumvented the compression issues, while also providing better cosmesis than the conventional helmet. Four months postoperatively, the helmet remains intact and in use. Conclusions 3D printing can be used to produce low-volume, patient-specific external devices for rehabilitation where standardized adjuncts are not optimal. Once initial start-up costs and training are overcome, these devices can be produced by surgeons themselves to meet a wide range of clinical needs.
Background: Patients who undergo decompressive craniectomy (DC) are often fitted with a protective helmet that protects the craniectomy site from injury during rehabilitation. However, conventional “one-size-fits-all” helmets may not be feasible for certain craniectomy defects. We describe the production and use of a custom 3D-printed helmet for a DC patient where a conventional helmet was not feasible due to the craniectomy defect configuration.Case presentation: A 65-year-old male with ethmoid sinonasal carcinoma underwent cranionasal resection and DC with free vastus lateralis flap reconstruction to treat cerebrospinal fluid leakage. He required an external helmet to protect the craniectomy site, however, the rim of a conventional helmet compressed the craniectomy site, and the straps compressed the vascular pedicle of the muscle flap. Computed topography (CT) scans of the patient’s cranium were imported into 3D modelling software and used to fabricate a patient-specific, strapless helmet using fused deposition modelling (FDM). The final helmet fit the patient perfectly and circumvented the compression issues, while also providing better cosmesis than the conventional helmet. Four months postoperatively, the helmet remains intact and in use.Conclusions: 3D printing can be used to produce low-volume, patient-specific external devices for rehabilitation where standardized adjuncts not optimal. Once initial start-up costs and training are overcome, these devices can be produced by surgeons themselves to meet a wide range of clinical needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.