Phospho- N -acetylmuramoyl-pentapeptide translocase (MraY AA ) from Aquifex aeolicus is the binding target for the nucleotide antibiotic muraymycin D2 (MD2). MraY AA in the presence of the MD2 ligand has been crystallized and released, while the interactions between the ligand and active-site residues remain less quantitatively and qualitatively defined. We characterized theoretically the key residues involved in noncovalent interactions with MD2 in the MraY AA active site. We applied the quantum theory of atoms in molecules and natural bond orbital analyses based on the density functional theory method on the solved crystal structure of MraY with the MD2 to quantitatively estimate the intermolecular interactions. The obtained results revealed the presence of multiple hydrogen bonds in the investigated active site with strength ranging from van der Waals to covalent limits. Lys70, Asp193, Gly194, Asp196, Gly264, Ala321, Gln305, and His325 are key active-site residues interacting with MD2. Conventional and unconventional hydrogen bonds in addition with charge–dipole and dipole–dipole interactions contribute significantly to stabilize the MD2 binding to the MraY AA active site. It was also found that water molecules inside the active site have substantial effects on its structure stability through hydrogen-bonding interactions with MD2 and the interacting residues.
Dehydroamino acids are important structural motifs and biosynthetic intermediates for natural products. Many bioactive natural products of nonribosomal origin contain dehydroamino acids; however, the biosynthesis of dehydroamino acids in most nonribosomal peptides is not well understood. Here, we provide biochemical and bioinformatic evidence in support of the role of a unique class of condensation domains in dehydration (CmodAA). We also obtain the crystal structure of a CmodAA domain, which is part of the nonribosomal peptide synthetase AmbE in the biosynthesis of the antibiotic methoxyvinylglycine. Biochemical analysis reveals that AmbE-CmodAA modifies a peptide substrate that is attached to the donor carrier protein. Mutational studies of AmbE-CmodAA identify several key residues for activity, including four residues that are mostly conserved in the CmodAA subfamily. Alanine mutation of these conserved residues either significantly increases or decreases AmbE activity. AmbE exhibits a dimeric conformation, which is uncommon and could enable transfer of an intermediate between different protomers. Our discovery highlights a central dehydrating function for CmodAA domains that unifies dehydroamino acid biosynthesis in diverse nonribosomal peptide pathways. Our work also begins to shed light on the mechanism of CmodAA domains. Understanding CmodAA domain function may facilitate identification of new natural products that contain dehydroamino acids and enable engineering of dehydroamino acids into nonribosomal peptides.
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. abstractWe report the synthesis and characterization of nanocomposite thin films consisting of single-walled carbon nanotubes with different functionalization schemes dispersed in an epoxy matrix. The thermal, rheological, and mechanical properties of nanocomposite thin films were experimentally characterized to establish a relationship between processing and performance. The results from the rheological analysis confirmed that the nanotube type and functionalization strongly affect the resin viscosity during cure. A correlation between the rheological behaviour and the measured elastic properties was established. Nanotubes produced by plasma and functionalized with carboxyl group had the lowest influence on viscosity and led to the highest improvement in elastic properties. The measured increase in elastic modulus was consistent with predictions based on Mori-Tanaka micromechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.