With the advent of cloud computing, many new networking concepts have been introduced to simplify network management and bring innovation through network programmability. The emergence of the software-defined networking (SDN) paradigm is one of these adopted concepts in the cloud model so as to eliminate the network infrastructure maintenance processes and guarantee easy management. In this fashion, SDN offers real-time performance and responds to high availability requirements. However, this new emerging paradigm has been facing many technological hurdles; some of them are inherent, while others are inherited from existing adopted technologies. In this paper, our purpose is to shed light on SDN related issues and give insight into the challenges facing the future of this revolutionary network model, from both protocol and architecture perspectives. Additionally, we aim to present different existing solutions and mitigation techniques that address SDN scalability, elasticity, dependability, reliability, high availability, resiliency, security, and performance concerns.
Abstract-The Purpose of homomorphic encryption is to ensure privacy of data in communication, storage or in use by processes with mechanisms similar to conventional cryptography, but with added capabilities of computing over encrypted data, searching an encrypted data, etc. Homomorphism is a property by which a problem in one algebraic system can be converted to a problem in another algebraic system, be solved and the solution later can also be translated back effectively. Thus, homomorphism makes secure delegation of computation to a third party possible. Many conventional encryption schemes possess either multiplicative or additive homomorphic property and are currently in use for respective applications. Yet, a Fully Homomorphic Encryption (FHE) scheme which could perform any arbitrary computation over encrypted data appeared in 2009 as Gentry's work. In this paper, we propose a multi-cloud architecture of N distributed servers to repartition the data and to nearly allow achieving an FHE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.