A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism (
ABSTRACTIncreasing attention has focused on the role of free radicals derived from oxygen in the pathophysiology of a wide variety of disorders. One of the well-recognized targets of free radical-induced iWury is peroxidation of lipids. Using a variety of approaches, we have found that a series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase mechanism involving free radicalcatalyzed peroxidation of arachidonic acid. Levels of these compounds in normal human plasma and urine range from 5 to 40 pg/ml and 500 to 4000 pg/mg of creatinine, respectively.
A B S T R A C T A unilateral model of puromycin aminonucleoside (PAN)-induced albuminuria was produced in Munich-Wistar rats to examine the mechanisms responsible for renal salt retention. 2 wk after selective perfusion of left kidneys with PAN (n = 8 rats) or isotonic saline (control, n = 7 rats), increases in albumin excretion and decreases in sodium excretion were demonstrated in PAN-perfused but not in nonperfused kidneys of PAN-treated rats although systemic plasma protein concentration remained at control level. Total kidney glomerular filtration rate (GFR) and superficial single nephron (SN) GFR were also reduced selectively in PAN-perfused kidneys, on average by -30%, due primarily to a marked decline in the glomerular capillary ultrafiltration coefficient (Kf), which was also confined to PAN-perfused kidneys. Values for absolute proximal reabsorption (APR) were also selectively depressed in PAN-perfused kidneys, in keeping with a similarly selective decline in peritubular capillary oncotic pressure measured in these kidneys, the latter also a consequence of the fall in Kf. In a separate group of seven PAN-treated rats, however, no differences were detected between PANperfused and nonperfused kidneys in the absolute amount of sodium reaching the early (0. In two additional groups of PAN-treated rats, infusion of saralasin (0.3 mg/kg per h, iv.) led to substantial increases in total kidney GFR and SNGFR in PAN-perfused but not in nonperfused kidneys. Despite these increases in total and SNGFR, urinary sodium excretion by PAN-perfused kidneys remained at a level far below that for nonperfused kidneys, again indicating that the antinatriuresis characterizing the PAN-perfused kidney is due to alterations in sodium handling by the tubules rather than changes in GFR. These results therefore indicate (a) that reductions in Kf and depressed sodium reabsorption by proximal tubules and Henle's loop segments in this model are brought about by intrarenal rather than circulating or systemic factors, and (b) assuming that superficial nephrons are representative of the entire nephron population, renal salt retention in this model is due primarily to intrarenal factor(s) acting beyond the distal convolution.77±0
These studies examine the in vivo formation of a unique series of PGF2-like compounds (F2-isoprostanes) derived from free radical-catalyzed nonenzymatic peroxidation of arachidonic acid. We have previously shown that levels of these compounds increase up to 50-fold in rats administered CC14. To understand further the formation of these compounds in vivo, we carried out a series of experiments assessing factors influencing their generation. After CC14 (2 ml/kg) was administered to rats, plasma F2-isoprostanes increased 55-fold by 4 h. Levels declined thereafter, but at 24 h, they were still elevated 21-fold, indicating continued lipid peroxidation. Pretreatment of rats with isonicotinic acid hydrazide and phenobarbital to induce cytochrome P450 enhanced the production of F2-isoprostanes after CC14 administration eightfold and fivefold, respectively, whereas inhibition of the cytochrome P-450 system with SKF-525A and 4-methylpyrazole decreased formation of F2-isoprostanes after CC14 by 55 and $2%, respectively. Further, the glutathione-depleting agents buthionine sulfoximine and phorone augmented the F2-isoprostane response to CC14 by 22-and 11-fold, respectively. F2-isoprostanes are formed in situ esterified to lipids and, in addition to increases in levels of free F2-isoprostanes in the circulation, levels of F2-isoprostanes esterified to lipids in various organs and plasma also increase sharply during CC14 poisoning. The measurement of F2-isoprostanes may facilitate investigation of the role of lipid peroxidation in human diseases. (J. Clin. Invest. 1992. 90:2502-2507
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.