The vast majority of structures, even in high-risk zones, will not actually be subjected to earthquake during their design lives. It is therefore felt that spiral binding is only likely to be used in practice if it can contribute to the static shear strength of the structure and so replace at least some of the stirrups. The question addressed here is whether such spirals are useful to carry shear in beams and in particular whether they can usefully improve the residual shear strength at hinges after severe cyclic bending.
Common transverse reinforcement of reinforced concrete members with circular cross section consists of round ties or spirals. Its purpose in members that are not subjected to significant shear loading is to provide proper confinement for concrete, and eliminate buckling of the longitudinal reinforcement bars. If spirals are to be used as both a shear resister and confining enabler for reinforced concrete beams, then under combined action of moment and shear, spirals will be required to provide or contribute to proper shear resistance. Hence a proper assessment for spiral shear contribution is required.
The construction industry has a huge impact on the environment in terms of noise, water and land pollution, traffic congestion and waste disposal. Another aspect of the construction industry impact on the environment is the increasing energy consumption. According to published research, buildings energy use is expected to increase by 32% by the year 2040. As a result, efforts have been directed toward improving green building awareness and the application of sustainability concepts in the design, construction and building management processes. In this research, using extensive simulations, the integration between Building Information Modeling methodology (BIM) and Building Energy Modeling (BEM) methodologies in order to effectively minimize the overall energy consumption of a residential building in the UAE is investigated by studying several design factors including: building orientation and windows type, size and distribution on the overall building energy consumption. Results show that to increase the modelled building’s energy and financial efficiency, recommended changes to the initial design have to be done including changing the distribution of the southern façade and the type of windows glazing used. More specifically, there was a peak energy reduction of: 8% with a 180 degrees building orientation angle, 2% with a window to wall ratio of 15%, and 2% when double glazing windows were used. This work validates that the combination of BIM and BEM allows to enhance the overall building energy consumption efficiency and to further establish the needed sustainability goals through a generated 3D model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.