Abstract. There is developed a differential-algebraic approach to studying the representations of commuting differentiations in functional differential rings under nonlinear differential constraints. An example of the differential ideal with the only one conserved quantity is analyzed in detail, the corresponding Lax type representations of differentiations are constructed for an infinite hierarchy of nonlinear dynamical systems of the Burgers and Korteweg-de Vries type. A related infinite bi-Hamiltonian hierarchy of Lax type dynamical systems is constructed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.