Introduction
Nonimmune hydrops fetalis (NIHF) has varied etiology. We assessed the etiological spectrum and evaluated the utility of fetal whole exome sequencing (fWES) for the diagnosis of NIHF.
Methods
In this prospective cohort study, we evaluated antenatally diagnosed fetuses with NIHF between July 2018 and December 2019 according to the routine diagnostic algorithm. Fetuses that remained undiagnosed after routine NIHF workup were subjected to fetal chromosomal microarray and/or WES. Pregnancies were followed up for clinical outcomes.
Results
Of the 45 fetuses, consanguinity and recurrent hydrops fetalis were observed in 13.3% (6/45) and 28.8% (13/45), respectively. Overall, an etiological diagnosis was possible in 75.5% (34/45) of fetuses, while the cause remained unknown in 24.4% (11/45). A genetic etiology was identified in 46.6% (21/45): aneuploidy and monogenic disorders in 28.8% (13/45) and 17.8% (8/45), respectively. fWES on 19 fetuses detected disease‐causing variants in 42.1% (8/19). Nine novel variants were detected in RAPSN, ASCC1, NEB, PKD1L1, GUSB, and PIEZO1. Only 8.8% (4/45) of the cohort survived without morbidity.
Conclusions
This study describes the etiological spectrum and the disease‐causing variants in an Indian cohort of hydropic fetuses.
MYRF monoallelic variants have been described in syndromic forms characterized by cardiac‐urogenital syndrome and isolated nanophthalmos with/without minor systemic manifestations. We describe a large family with a paternally inherited pathogenic variant in MYRF that manifested as congenital diaphragmatic hernia (CDH), cardiac and urogenital abnormalities, and/or nanophthalmos with significant intrafamilial variability.
Abnormalities in the normal left-right axis asymmetry range from situs inversus totalis to situs ambiguous or heterotaxy. More than 80 genes have been describedto have a role in the establishment of the normal situs of the internal organs. Pathogenic variants in the PKD1L1 gene have recently been described in heterotaxy and congenital heart disease. Till date, 11 families have been described with PKD1L1-related heterotaxy. We describe the first Indian family with two affected foetuses with PKD1L1-related nonimmune hydrops, congenital heart disease, situs inversus, and heterotaxy, with biallelic variants in the compound heterozygous state.
Periplasmic-binding proteins occupy the periplasmic space of bacteria and are involved in binding and transport of various ions, siderophores, and other diverse types of solutes. These proteins may be associated with membrane transport systems or may help in activation of signal transducers. There is limited information available on Mycobacterium tuberculosis (Mtb) periplasm-inhabiting proteins. In the present study, we have performed genome-wide identification and functional annotation of periplasmic-binding proteins of Mtb on the basis of signature characteristics and their functional motifs. 37 putative periplasmic-binding proteins were identified in Mtb proteome and categorized into different classes mainly known for their association with membrane transport and signaling pathways. Conclusively, this study adds 11 completely novel proteins to the periplasmic binding proteome of Mtb, which were not annotated as PBPs earlier. This study provides an overview of the periplasmic binding proteome of Mtb, which may be involved in various important patho-physiological functions of the bacteria. These proteins may serve as novel drug targets, which may lead to better treatment strategies against this deadly pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.