Objectives This paper focuses on developing a regularization-based feature selection approach to select the most effective attributes from the Parkinson’s speech dataset. Parkinson’s disease is a medical condition that progresses as the dopamine-producing nerve cells are affected. Early diagnosis often reduces the effect on the individuals, minimizes the advancement over time. In recent times, intelligent computational models are used in many complex cases to diagnose a clinical condition with high precision. These models are intended to find meaningful representation from the data to diagnose the disease. Machine learning acts as a tool, gears up the model learning process through a mathematical baseline. But, not in all cases, machine learning will be demanded to perform optimally. It comes with a few constraints, mainly the representation of the data. The learning models expect a clean, noise-free input, which in-turns produces better discriminative patterns over different categories of classes. Methods The proposed model identified five candidate features as predictors. This feature subset is trained with different varieties of supervised classifiers to trace out the best-performing model. Results The results are validated through accuracy, precision, recall, and receiver’s operational characteristic curves. The proposed regularization- based feature selection model outperformed the benchmark algorithms by attaining 100% accuracy on most of the classifiers, other than linear discriminant analysis (99.90%) and naïve Bayes (99.51%). Conclusions This paper exhibits the need for intelligent models to analyze complex data patterns to assist medical practitioners in better disease diagnosis. The results exhibit that the regularization methods find the best features based on their importance score, which improved the model performance over other feature selection methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.