Punch biopsies of human skin were obtained 1 day after irradiation with two minimal-erythema doses (MED) from either a UVB light source or a Solar Simulator and incubated in organ culture for 72 h. Organ culture fluids obtained at 24, 48 and 72 h were analyzed for collagenolytic activity and for reactivity with antibodies to matrix metalloproteinase-1 (MMP-1; interstitial collagenase) and MMP-13 (collagenase-3). High levels of collagenolytic activity were seen in organ culture fluid from skin exposed to either light source. MMP-1 was strongly induced in parallel, increasing from less than 100 ng/ml in organ culture fluid from control skin to approximately 1.1 microg/ml in culture fluid from UV-treated skin. Whereas most of the detectable MMP-1 in control culture fluid was represented by the latent form of the enzyme, approximately 50% of the enzyme was present as the active form in organ culture fluid of UV-exposed skin. In contrast, there was no detectable MMP-13 in control organ culture fluid and very little change after UV exposure (less than 100 ng/ml in both cases). Finally, neutralization studies with a blocking antibody to MMP-1 removed 95 +/- 4% of the collagenolytic activity in the organ culture fluid from UV-treated skin. These findings strongly implicate MMP-1 rather than MMP-13 as the major collagenolytic enzyme responsible for collagen damage in photoaging.
Mice lacking matrix metalloproteinase-3 (MMP-3; stromelysin-1) demonstrated significantly less injury than their normal counterparts following the formation of IgG-containing immune complexes in the alveolar wall or in the wall of the peritoneum. Likewise, mice lacking MMP-3 demonstrated less lung injury following intra-tracheal instillation of the chemotactic cytokine macrophage inhibitory protein-2 (MIP-2) than did mice with MMP-3. There was a relationship between tissue injury (evidenced histologically) and accumulation of anti-laminin 111 immunoreactive material in the bronchoalveolar lavage (BAL) or peritoneal lavage (PL) fluid. There was also a relationship between tissue injury and influx of neutrophils into the BAL or PL fluid. Taken together, these data demonstrate an important role for MMP-3 in acute inflammatory tissue injury.
Punch biopsies of human skin were obtained 1 day after irradiation with two minimal-erythema doses (MED) from either a UVB light source or a Solar Simulator and incubated in organ culture for 72 h. Organ culture fluids obtained at 24, 48 and 72 h were analyzed for collagenolytic activity and for reactivity with antibodies to matrix metalloproteinase-1 (MMP-1; interstitial collagenase) and MMP-13 (collagenase-3). High levels of collagenolytic activity were seen in organ culture fluid from skin exposed to either light source. MMP-1 was strongly induced in parallel, increasing from less than 100 ng/ml in organ culture fluid from control skin to approximately 1.1 mg/ml in culture fluid from UV-treated skin. Whereas most of the detectable MMP-1 in control culture fluid was represented by the latent form of the enzyme, approximately 50% of the enzyme was present as the active form in organ culture fluid of UV-exposed skin. In contrast, there was no detectable MMP-13 in control organ culture fluid and very little change after UV exposure (less than 100 ng/ml in both cases). Finally, neutralization studies with a blocking antibody to MMP-1 removed 95 6 4% of the collagenolytic activity in the organ culture fluid from UV-treated skin. These findings strongly implicate MMP-1 rather than MMP-13 as the major collagenolytic enzyme responsible for collagen damage in photoaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.