FPGA implementation used of Rotating phase shift (RPS) for peak-to-average power ratio (PAPR) reduction in Multi Carrier Code Division Multiple Access (MC-CDMA) signals. Because, MC-CDMA is still suffering from PAPR which is a major drawback in most of the multi carrier communication systems. In addition, the implementation of the system in an FPGA becomes more flexible and scalable. It eliminates the search for optimum phase factors from a given set, which manifests improved PAPR at reduced computational complexity as compared to conventional PTS and SLM. The amplitude of the signal is reduced by rotating each of the partially transmitted sequence anticlockwise by a π/2 degree and the peak power is reduced by circularly shifting the quadrature component of the partially transmitted sequence after phase rotation. A brief description of PTS, SLM is compared with the RPS, which best reduces PAPR from PTS and SLM. It is also presented that VHDL code of the RPS is designed by Xilinx ISE 14.1 implements of FPGA. The peak-to-average power ratio performance of the proposed method has been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.