Corrosion, a spontaneous process of deterioration of metallic materials by the environment, reflect impact on economic losses and safeties. Apart from the natural commodities, human activities also initiate corrosion. Industrial maintenance work like acid descaling and acid pickling dissolves the machinery parts and reduces their life time. Inhibitors are widely employed for prophylactic action on metal parts [1-3]. The polar functional groups and π-electrons present in the organic inhibitors act as adsorption site for metal-inhibitor interaction [4-6]. The adsorption may be physical due to electrostatic force of attraction between the inhibitors and substrate surface or chemical ascribable to dispense of electrons among inhibitors and metal or both [7,8]. Conducting polymers have been studied extensively in the place of organic compounds owing to their stability and mechanical strength [9,10]. Polyaniline has been explored as good protective abettor against deterioration of metal [11-13]. Pseudocapacitive electrodes have been developed from various transition metal oxides including NiO [14]. Further nickel oxide is used in electrochromic coating [15], as a catalyst [16], as an adhesive in enamels [17] and as an anode layer in solid oxide fuel cells [18]. The above
Abstract. Schiff bases comprised of highly reactive ferrocene derivatives and normal aromatic moiety have been prepared successfully. Spectral variations noticed in the spectra of newly synthesized receptors for the addition of different metal ions discloses the multi metal ion sensing ability of the prepared sensors. Harmonization of Cu2+ ions with receptor originate as MLCT band in the visible region. Shrewdness made from the data obtained from cyclic voltammetry studies give an idea about the concentration of metal ions needed for effective sensing. In vitro antimicrobial studies and H- bond energy calculation for the interaction between the above sensory materials and proteins of selected microorganisms using molecular docking studies disclosures the antifungal activity of newly prepared materials. Resumen. Bases de Schiff derivadas de grupos ferrocenilos altamente reactivos y grupos aromáticas fueron preparadas exitosamente. La habilidad de los sistemas como sensores para detectar diversos iones metálicos se vió en la variación de las características observadas en sus espectors. La interacción de iones Cu2+ con el receptor produce una banda MLCT en la región visible. Los estudios de voltametría cíclica indican la concentración de los iones metálicos necesaria para una detección eficiente. Estudios antimicrobianos in vitro y cálculos de la energía de puentes de hidrógeno para las interacciones entre los sensores (bases de Schiff) y las proteínas de microorganismos selectos, basados en estudios de acoplamiento molecular, confirman la actividad antifúngica de los nuevos compuestos reportados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.