The wall shear stress and the vortex dynamics in a circular impinging jet are investigated experimentally for Re = 1,260 and 2,450. The wall shear stress is obtained at different radial locations from the stagnation point using the polarographic method. The velocity field is given from the time resolved particle image velocimetry (TR-PIV) technique in both the free jet region and near the wall in the impinging region. The distribution of the momentum thickness is also inspected from the jet exit toward the impinged wall. It is found that the wall shear stress is correlated with the large-scale vortex passing. Both the primary vortices and the secondary structures strongly affect the variation of the wall shear stress. The maximum mean wall shear stress is obtained just upstream from the secondary vortex generation where the primary structures impinge the wall. Spectral analysis and cross-correlations between the wall shear stress fluctuations show that the vortex passing influences the wall shear stress at different locations simultaneously. Analysis of cross-correlations between temporal fluctuations of the wall shear stress and the transverse vorticity brings out the role of different vortical structures on the wall shear stress distribution for the two Reynolds numbers.
The flow in the near-field of a cross-shaped orifice jet is investigated experimentally in the present study. The three components of the velocity field are obtained at different longitudinal locations using time-resolved stereoscopic particle-image velocimetry measurements. The mean and the instantaneous entrainment rates are calculated to study the entrainment mechanism. The distribution of momentum thicknesses is also inspected in the region of the axis switching. It is found that both the instantaneous entrainment rate and the net volume flux are strongly dependent on the vortical structures present in the flow and particularly at different parts of the Kelvin–Helmholtz vortex ring. Hence, different phases of the flow are investigated in the region of the axis switching. The contribution of the turbulent normal and shear stresses to the streamwise vorticity generation is also studied in the near-field of the cross jet. The momentum flux and its streamwise evolution are obtained from the mean velocity field. The contribution of different turbulent intensities to the momentum flux is given. The proper orthogonal decomposition (POD) is then applied to show the streamwise evolution of energy content of the most energetic POD modes.
The protection of coastal areas against oil pollution is often addressed with the use of floating booms. These bodies are subject to a design always based on physical models. Indeed, the numerical modelling of a two-phase flow (oil and water) with complicated free surface in the vicinity of a floating body is a challenging issue. The Smoothed Particle Hydrodynamics (SPH) Lagrangian numerical method is appropriate to such simulations since it allows the modelling of complex motions and fluid-structure interactions. In this paper we first study the mechanism of oil leakage by entrainment due to combined turbulent production and buoyancy. Then, we present the main features of the SPH method in a turbulent formalism and apply this model to predict the motion of a boom and an oil spill in an open-channel and a wave flume, for three types of oil (heavy, light and emulsion). Results are compared to experiments and used to depict criteria for oil leakage. It appears that oil leakage by entrainment occurs when the surface water velocity upstream the boom exceeds a critical value which was estimated as 0.5 m/s for a light oil under steady current. A more accurate criterion is derived from theoretical considerations and compared to numerical experiments. An extensive use of this model should extend our knowledge regarding the mechanisms of oil leakage under a boom and allow a better an easier design of booms in the near future.
The influence of the large-scale vortical structures on the wall shear stress in a circular impinging jet is investigated experimentally for a Reynolds number of 1260. Time-resolved particle image velocimetry and polarographic measurements are performed simultaneously. It is found that the instantaneous wall shear stress is strongly dependent on the vortex dynamics, particularly for different parts of the transverse vortex. The influence of the vortex ring, the secondary and tertiary vortices on the ejection/sweep process near the wall is the main mechanism involved in the wall shear stress variation. In the region of the boundary layer separation, the wall shear stress amplitude increases just upstream of the separation and dramatically decreases in the recirculation zone downstream from the separation. The interaction between primary and secondary structures and their pairing process with the tertiary structure affects the sweep/ejection process near the wall and subsequently the wall shear stress variation. A comparison between the Finite Time Lyapunov Exponent (FTLE) method and the phase average technique is performed. It is shown that both methods describe the flow dynamics in the impinging region of the vortex ring. However, the FTLE method is more suitable for describing the unsteady separation of the boundary layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.