Date palm (Phoenix dactylifera L.) trees are largely cultivated across the Algerian oases; they are principal sources of remuneration and the economic basis for residents of these areas. Date palm fruits are rich sources of essential nutrients, vitamins, minerals, and dietary fibers, with many potential health benefits, yet there are few studies on the chemical composition and biological properties of date palm seed oil. In this study, we present an in-depth characterization of the biochemical composition and antioxidant properties of date palm seed oil (DPSO) produced in Algeria. DPSOs of eight Algerian cultivars, Arechti, Degla-Baida, Deglet-Nour, Ghars, Haloua, Itima, Mech-Degla, and Tentbouchet, were investigated to determine their biochemical compositions and antioxidant properties. The results highlight the potential of DPSO as an alternative food and a natural resource, thanks to several important compounds having high antioxidant capacity. In particular, fatty acids and triacylglycerol (TAGs) analyses showed that oleic (42.74–50.19%), lauric (18.40–22.2%), and myristic (8.83–10.17%) were the major fatty acids, while 1-myristoyl 2-oleoyl 3-linoleoyl glycerol, 1-linolenoyl 2-oleoyl 3-linoleoyl glycerol, 1-2-linolenoyl 3-linoleoyl glycerol, and 1-linolenoyl 2-myristoyl 3-linoleoyl glycerol were the major TAGs. Biophenols and tocopherols analyses revealed the presence of important compounds, such as catechin (22.04–24.92 mg/kg), vanillin (10.67–23.98 mg/kg), and α-tocopherol (443.59 mg/kg), at high remarkable levels. Therefore, a comparison with the literature data concerning other seed oils, including olive oil, confirms that DPSO can be considered a high-quality oil, from a biochemical and biological point of view.
Olive tree with its main final product, olive oil, is an important element of Mediterranean history, considered the emblematic fruit of a civilization. Despite its wide diffusion and economic and cultural importance, its evolutionary and phylogenetic history is still difficult to clarify. As part of the Mediterranean basin, Algeria was indicated as a secondary diversification center. However, genetic characterization studies from Maghreb area, are currently underrepresented. In this context, we characterized 119 endemic Algerian accessions by using 12 microsatellite markers with the main goal to evaluate the genetic diversity and population structure. In order to provide new insights about the history of olive diversification events in the Central-Western Mediterranean basin, we included and analyzed a sample of 103 Italian accessions from Sicily and, a set of molecular profiles of cultivars from the Central-Western Mediterranean area. The phylogenetic investigation let us to evaluate genetic relationships among Central-Mediterranean basin olive germplasm, highlight new synonymy cases to support the importance of vegetative propagation in the cultivated olive diffusion and consolidate the hypothesis of more recent admixture events occurrence. This work provided new information about Algerian germplasm biodiversity and contributed to clarify olive diversification process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.