We present results on the dynamics of laser-induced blow-off shockwave generation from the rear side of 20 µm thick aluminum and copper foil confined with a glass (BK7) substrate. These foils are irradiated by 10 ns, 532 nm laser pulses of energy 25 – 200 mJ corresponding to the intensity range 0.2 – 10 GW/cm2. The plasma temperature at the glass-foil interface is observed to play an important role in the coupling of laser energy to the foil. From our experiments and 1D hydrodynamic simulations, we confirm that moving the glass-foil interface away from the focal plane led to (a) enhanced absorption of the laser beam by the foil resulting in ~ 30 % higher blow-off shock velocities (b) significant changes in the material ejection in terms of increased blow-off mass of the foil (c) lower plasma density and temperatures. The material ejection as well as blow-off shock velocity is higher for Al compared to Cu. The simulated shock evolution in ambient air shows a reasonably good agreement with the experimental results.
A clear visualization of the physical processes of spatially confined ns laser induced atmospheric air plasma within a rectangular glass cavity using optical imaging is presented. The occurrence of various processes starting from the early plasma and shock wave expansion dynamics to shock reflection at the cavity boundaries and compression of the plasma due to reflected shockwaves is studied using defocused shadowgraphy and self-emission imaging techniques. Experimentally, we evidenced that the counter propagating reflected primary shockwaves (PSW) interact with the expanding plasma generating a secondary shockwave (SSW) which compresses the plasma core, modifying the plasma morphology resulting in enhanced plasma parameters. The numerical simulations performed via the two-dimensional hydrodynamic (2D-HD) FLASH codes, revealed that the number density increases up to a maximum of 3.6 times compared to the unconfined plasma. The input laser pulse energy and the aspect ratio of the cavity is observed to play a dominant role in the confinement and compression of the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.