This study concerns the creep impact on strength parameters of the selected very cohesive soils (PI = 30–70%). The analysis refers to Neogene clays characterized by a complex structure, resulting directly from a complicated load history in the geological time scale and identified glacitectonic deformations. In the process of samples’ preparation for strength tests as well as during the interpretation of the post-failure state, particular attention was paid to the soil structure. The imaging methods (X-ray densitometry and computer microtomography) enabled the comparison of the soil structure and the selection of samples with similar characteristics. The completed program of strength tests consisted of two series of tests in the triaxial stress state, differentiated by the occurrence of the initial creep stage, preceding the typical strength test scheme under undrained conditions. This study allowed to obtain a quantitative assessment of the influence of the creep process on the strength parameters of tested soils. Constant stress lower than 60% of the shear stress deviator leads to the deceleration creep course (m parameter 0.64–0.89). As a result, higher values of internal friction angle (20% increase comparing to triaxial tests without creep stage) and cohesion reduction are obtained from triaxial creep tests. Creep parameter m is found to be a valuable indicator for differentiation of landslide activity trend. The tests proved low values of axial strains (1–5%) at failure, which was associated with lithogenesis. By the implementation of obtained strength parameters into the 3D finite element model of the slope, the potential influence of the creep process on the stability of an exemplary cross section of the Warsaw slope could be determined.
wrzykraj, P. 2016. Stress-strain behaviour analysis of Middle Polish glacial tills from Warsaw (Poland) based on the interpretation of advanced field and laboratory tests. Acta Geologica Polonica, 66 (3), 561-585. Warszawa.The selected parameters of the Wartanian and Odranian tills, with relation to their spatial occurrence, grain size distribution, mineralogical composition, matric suction and other physical characteristics, are presented. The assessment of the lithogenesis and stress history on the microstructure is attempted. The comparison of the compression and permeability characteristics from field and laboratory tests has been performed. Laboratory consolidation tests carried out with up to 20MPa vertical stress, revealed two yield stress values, one in the range of a couple hundreds kPa, the other in the range of a couple thousands kPa. Based on those results, the reliability of the soil preconsolidation assessment, with the use of the two different methods is discussed. The aspect of the triaxial strength reduction under the dynamic loading of diverse frequency and amplitude is raised. The research results depict a variety of possible geological-engineering characteristics, under the divergent constraints scenarios, of compression or strength weakening origin. The effects of the specialized research program will widen the possibilities of physio-mechanical and structural characterization of soils for geological-engineering purposes.
Abstract:The study concerns soil creep deformation in multistage triaxial stress tests under drained conditions. High resolution X-ray computed microtomography (XμCT) was involved in structure recognition before and after triaxial tests. Undisturbed Neogene clay samples, which are widespread in central Poland, were used in this study. XμCT was used to identify representative sample series and informed the detection and rejection of unreliable ones. Maximum deviatoric stress for in situ stress confining condition was equal 95.1 kPa. This result helped in the design of further multistage investigations. The study identified the rheological strain course, which can be broken down into three characterizations: decreasing creep strain rate, transitional constant creep velocity, and accelerating creep deformation. The study found that due to multistage creep loading, the samples were strengthened. Furthermore, there is a visibly "brittle" character of failure, which may be the consequence of the microstructure transformation as a function of time as well as collapse of voids. Due to the glacial tectonic history of the analyzed samples, the reactivation of microcracks might also serve as an explanation. The number of the various sizes of shear planes after failure is confirmed by XμCT overexposure.
Reliability of equilibrium state evaluation about settlement slopes in the context of natural and human-made hazards is a complex issue. The geological structure of the vicinity of the upland slope in the urban environment of Warsaw is characterised by a significant spatial diversification of the layers. This is especially due to the glacitectonics in the Mio-Pliocene clays, which are located shallowly under the sandy tills’ formations. With substantial variability in the clay roof surface, point recognition by drilling is often insufficient. The use of electrical resistivity imaging (ERI) in the quasi-3D variant provides accurate images of the real ground conditions, which is crucial in optimal geotechnical design. In forecasting the behaviour of the slope, it is necessary to quantify the impact of spatially differentiated systems of disturbed layers on changes in the safety factor (SF), which corresponds to the observed landslide activity of the Warsaw Slope. This study concerns numerous calculation model analyses of the optional clay position in the context of slope stability conditions. A wide range of soil properties variability was taken into account, resulting from both lithogenesis and subsequent processes disintegrating the original soil structure. Regarding the geological conditions of the slip surface, the use of classical computational methods and numerical modelling (FEM) was considered for comparative purposes. The results indicated that local changes in equilibrium conditions were affected by the different morphology of the clay roof surface of the slope and the alternation in strength characteristics on the slip surfaces. The findings of the study contribute to sustainable spatial planning of near-slope regions.
Formation of varved clays is characterized by specific compressibility and consolidation features, which are difficult to assess. The construction of an expressway through the area of varved, glacilimnic sediments (Vistula glacial period) required careful analysis of the soil reaction to the increasing load caused by growing embankment. The settlement analyses conducted in relation to the schedule of load increase during construction allowed to verify the deformability assessment of the compressible clays. In order to quantify the compressibility and consolidation parameters of clays, an iterative calculation model was created. The method of the “inverse solution” was used to define optimized values of deformability parameters. The observed delayed reaction of the soil to applied load allowed to assess the nature of consolidation. Comparison of the parameters obtained from the model with the results of laboratory and field tests allowed to evaluate drainage characteristics during consolidation of varved clays as well as to introduce correlation coefficients for interpreting compressibility parameters on the basis of CPT tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.