Continuous urban development significantly transforms the ecosystem in a big city. The increasing frequency of heat waves and their influence on the rise in mortality in big cities suggest that the thermal hazard (long‐term occurrence of high air temperature) is one of the key climatic hazards of present times. The global temperature rise, reinforced in urbanized areas by the anthropogenic heat flux, leads to intensified convection processes and increased precipitation, especially torrential rain. One of the most important hydrological hazards in a big conurbation is the urban flood hazard. In this paper the identified climatic hazards occurring in a big city are analysed: the thermal hazard and the urban flood hazard. The areas currently exposed to thermal and urban flood hazards in Warsaw are identified and assessed in terms of the hazard level. The results obtained are verified with the data from meteorological measuring stations (the thermal hazard) and from the Fire Department interventions connected with rainfall and flooding (the urban flood hazard). A map of hydro‐meteorological hazards was created by combining thermal hazard and urban flood hazard maps. The approach combining the exposure to thermal and urban flood hazards, presented in this study, uses widely accessible spatial data and can be applied to any location. It can also play a significant role in assessing the adaptation of urban areas to climate change and be an important source of information on the current exposure to hydro‐meteorological hazards as well as their possible increase.
The aim of this paper is to determine the contemporary differences in the inflow of global solar radiation in Warsaw (urban station) and Belsk (rural station). The meteorological data used comprised daily sums of global solar radiation (in MJ•m−2) and the duration of sunshine (in hours) for the period 2008 2014. On clear days in spring and summer, the rural area receives more solar radiation in comparison to the urban area, whereas in autumn a reverse relationship occurs. On cloudy days in all seasons, the rural area receives more solar radiation than the urban area, and the relationship is the strongest in winter. Differences between urban and rural areas on cloudy days are smaller than those observed on clear days.
The purpose of this study is to determine the size of air temperature changes with altitude in the mountains of the arid zone, on the example of the Upper Dades valley (High Atlas, Morocco). The air temperature change with altitude was determined on the basis of 5 years data from three meteorological stations. The analysis was carried out on an annual and seasonal basis. The annual and daily variations of thermal gradients between pairs of stations were also determined. It was found that the average thermal gradient in the Upper Dades valley was -1.02°C per 100 m. The highest values of the thermal gradient occur in winter and the lowest in summer. In winter, the thermal gradient was characterized by the greatest variability. Minima of the daily variation of air temperature gradients were observed in early morning hours and maxima around midday. In the lower part of the valley, air temperature inversion frequently developed between 10 AM and 3 PM UTC. The obtained results show high thermal gradients in the mountains of the arid zone, with their annual amplitude increasing in the lower parts of the valley. The instantaneous values of the gradients were significantly modified by the supply of latent heat and the occurrence of dust storms. It has been shown that the advection factor plays an important role in shaping large gradient values. The study contains novel results of thermal gradient measurements in high mountains of arid zone.
The aim of this study was to determine how COVID-19 pandemic influenced air quality in the chosen Polish cities. Data on nitrogen oxides, carbon monoxides, fine and coarse particulate matter concentrations from air quality monitoring stations was used to compare pollutants levels during the pandemic and in the 5-year pre-pandemic period. The impact of the pandemic on the air quality has been analysed using linear mixed effect models, adjusting for long-term, seasonal and weekly trends and meteorological conditions. Results showed that during the pandemic, until the second lockdown only nitrogen oxides levels were significantly reduced (up to 20%), while when again loosening restrictions the rebound effect led to 20-30% increase of all analysed pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.