In the paper, the method of straight lines approximately solves one class of optimal control problems for systems, the behavior of which is described by a nonlinear equation of parabolic type and a set of ordinary differential equations. Control is carried out using distributed and lumped parameters. Distributed control is included in the partial differential equation, and lumped controls are contained both in the boundary conditions and in the right-hand side of the ordinary differential equation. The convergence of the solutions of the approximating boundary value problem to the solution of the original one is proved when the step of the grid of straight lines tends to zero, and on the basis of this fact, the convergence of the approximate solution of the approximating optimal problem with respect to the functional is established. A constructive scheme for constructing an optimal control by a minimizing sequence of controls is proposed. The control of the process in the approximate solution of a class of optimization problems is carried out on the basis of the Pontryagin maximum principle using the method of straight lines. For the numerical solution of the problem, a gradient projection scheme with a special choice of step is used, this gives a converging sequence in the control space. The numerical solution of one variational problem of the mentioned type related to a one-dimensional heat conduction equation with boundary conditions of the second kind is presented. An inequality-type constraint is imposed on the control function entering the right-hand side of the ordinary differential equation. The numerical results obtained on the basis of the compiled computer program are presented in the form of tables and figures. The described numerical method gives a sufficiently accurate solution in a short time and does not show a tendency to «dispersion». With an increase in the number of iterations, the value of the functional monotonically tends to zero
The current stage in the development of mathematical and software support for the processes of designing the development of hydrocarbon fields is characterized not only by the improvement of the means of geological and hydrodynamic modeling of reservoir fluid filtration but also by the use of algorithms for optimizing the development of gas deposits. The paper considers the problem of optimal control of the depletion of a gas reservoir with a low-permeability top. Using the so-called Myatiev-Girinsky hydraulic scheme, a two-dimensional equation describing the unsteady gas flow in a reservoir with a jumper is averaged over the capacity of the productive reservoir. This comes down to a one-dimensional equation with an additional term, taking into account gas-dynamic relationships between the reservoir and the jumper. For the numerical solution of process control problems, a formula for the gradient of the functional characterizing the reservoir depletion is found, and the method of successive approximations based on Pontryagin’s maximum principle is applied. In this case, the direct and conjugate boundary value problems are solved by the method of straight lines, and the required flow rate, without taking it beyond the maximum and minimum possible, is found by the gradient projection method with a special choice of step. A brief block diagram of the algorithm for solving the problem is shown; on its basis, a computer program was compiled. The results of calculations are presented to identify the influence of the values of the complex communication parameter not only on the state of the object but also on the operating mode of the well. The expediency of using the presented optimization tool is dictated by an increase in the share of deposits
Using the methods of the optimal control theory, the problem of determining the optimal technological mode of gas deposits’ exploitation under the condition of their depletion by a given point in time is solved. This task is of particular interest for the exploitation of offshore fields, the activity of which is limited by the service life of the field equipment. The considered problem is also of certain mathematical interest as an objective of optimal control of nonlinear systems with distributed parameters. The usefulness and importance of solving such problems are determined by the richness of the class of major tasks that have a practical result. As an optimality criterion, a quadratic functional characterizing the conditions of reservoir depletion is considered. By introducing an auxiliary boundary value problem, and taking into account the stationarity conditions for the Lagrange functions at the optimal point, a formula for the gradient of the minimized functional is obtained. To obtain a solution to this specific optimization problem, which control function is sought in the class of a piecewise continuous and bounded function with discontinuities of the first kind, the Pontryagin’s maximum principle is subjected. The calculation of the gradient of the functional for the original and adjoint problems with partial differential equations is carried out by the method of straight lines. The numerical solution of the problem was carried out by two methods – the method of gradient projection with a special choice of step and the method of successive approximations. Despite the incorrectness of optimal control problems with a quadratic functional, the gradient projection method did not show a tendency to «dispersion» and gave a convergent sequence of controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.