Both preserved gapless states and gapping of Dirac states due to broken time reversal symmetry in bismuth chalcogenide topological insulators with surface and bulk magnetic impurities have been observed and reported in the literature. In order to shed more light on the mechanism of such effects we have performed comprehensive element selective study of the impact of Fe impurity position in the Bi2Se3 lattice on its magnetism. The iron atoms were imbedded in the structure (volume dopants) or deposited on the surface (adatoms) and they revealed striking phenomena. Volume doping preserves non-trivial topology of Bi1.98Fe0.02Se3. Fe atoms not only substitute Bi, but also locate in van der Waals gap. The former are magnetically isotropic, while the latter reveal large magnetic moment (4.5 μ
B) with perpendicular anisotropy if located near the surface. Majority of Fe adatoms on the surface of Bi2Se3 exhibit weaker moment (3.5 μ
B) with in-plane anisotropy, as expected for non-interacting species. Negligible interaction between surface electronic states and magnetic adatoms is confirmed by identical vibration spectra of Fe deposited on TI surface of Bi2Se3 and non-TI surface of Bi2S3. The data gathered show how indispensable is the knowledge of the magnetic impurity distribution for applications of bismuth chalcogenide systems.
We present STM/STS, ARPES and magnetotransport studies of the surface topography and electronic structure of pristine Bi2Se3 in comparison to Bi1.96Mg0.04Se3 and Bi1.98Fe0.02Se3. The topography images reveal a large number of complex, triangle-shaped defects at the surface. The local electronic structure of both the defected and non-defected regions is examined by STS. The defect-related states shift together with the Dirac point observed in the undefected area, suggesting that the local electronic structure at the defects is influenced by doping in the same way as the electronic structure of the undefected surface. Additional information about the electronic structure of the samples is provided by ARPES, which reveals the dependence of the bulk and surface electronic bands on doping, including such parameters as the Fermi wave vector. The subtle changes of the surface electronic structure by doping are verified with magneto-transport measurements at low temperatures (200 mK) allowing the detection of Shubnikov-de Haas (SdH) quantum oscillations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.