Quadratic or second-order magneto-optic effects in reflection significantly effect in-plane magnetization measurements. While the magneto-optic effects linear in magnetization are independent of orientation of cubic crystal axes, the amplitude and sign of the quadratic effects change significantly under crystal rotation. Theoretical formulas for the magneto-optic effects have been derived using a permittivity tensor including terms quadratic in magnetization. A method for separation of the diagonal and off-diagonal quadratic magneto-optic tensor components (G11−G12) and 2G44 is proposed. The theory was completed by an experimental observation of the quadratic effect anisotropy in an epitaxial Fe layer prepared on a MgO substrate. The influence of the magnetization components on the magneto-optic vector magnetometry is discussed for an interface, a single layer, and exchange coupled bilayer system for a general magnetization direction including the quadratic magneto-optic effect anisotropy.
Co 2 FeSi(100) films with L2 1 structure deposited onto MgO(100) were studied exploiting both longitudinal (LMOKE) and quadratic (QMOKE) magneto-optical Kerr effect. The films exhibit a huge QMOKE signal with a maximum contribution of up to 30 mdeg, which is the largest QMOKE signal in reflection that has been measured thus far. This large value is a fingerprint of an exceptionally large spin-orbit coupling of second or higher order. The Co 2 FeSi(100) films exhibit a rather large coercivity of 350 and 70 Oe for film thicknesses of 22 and 98 nm, respectively. Despite the fact that the films are epitaxial, they do not provide an angular dependence of the anisotropy and the remanence in excess of 1% and 2%, respectively.
Optical properties of epitaxial ZnO layers have been studied in the spectral region from 1.5 to 5.4 eV using four-zone null spectroscopic ellipsometry. An existing model dielectric function based on excitonic structure near direct band gap has been improved by including a high-energy absorption term. Surface layer, corresponding to the surface roughness, was found to be essential to fit the spectroellipsometric data obtained. Two kinds of samples have been studied: ZnO layers prepared on (0001) and (112̄0)-oriented sapphire substrates. The surfaces of the first ones were found to be more rough.
The Heusler compound CoTiSb was synthesized and investigated theoretically and experimentally with respect to electronic structure and optical, mechanical, and vibrational properties. The optical properties were investigated in a wide spectral range from 10 meV to 6.5 eV and compared with ab initio calculations. The optical spectra confirm the semiconducting nature of CoTiSb, with a strong exciton absorption at 1.83 eV. The calculated phonon dispersion as well as elastic constants verify the mechanical stability of CoTiSb in the cubic C1 b system. Furthermore, solid solution series of CoTi 1−x M x Sb (M = Sc, V and 0 x 0.2) were synthesized and investigated. The transport properties were calculated by all-electron ab initio methods and compared to the measurements. The thermoelectric properties were investigated by measuring the temperature dependence of electrical resistivity, Seebeck coefficient, and thermal conductivity. The thermal conductivity of the substituted compounds was significantly reduced. Sc substitution resulted in a p-type behavior with a high Seebeck coefficient of + 177.8 μV/K (350 K) at 5% Sc substitution. This value is in good agreement with the calculations. Fully relativistic Korringa-Kohn-Rostoker calculations in combination with the coherent potential approximation clarify the different contribution of states in the (001) plane of the Fermi surface for Sc-or V-substituted compounds CoTi 0.95 M x Sb (M = Sc, V).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.