We prove that for any toric ideal of a graph the degree of any element of Graver basis is bounded above by an exponential function of the maximal degree of a circuit.
The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth varieties). The generalization for singular varieties is due to Brasselet-Schürmann-Yokura. Following the work of Weber, we investigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are recalled. After this review part, we prove the positivity of local Hirzebruch classes for all toric varieties, thus proving false the alleged counterexample given by Weber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.