Aiming at relativistic description of gluons in hadrons, the renormalization group procedure for effective particles (RGPEP) is applied to baryons in QCD of heavy quarks. The baryon eigenvalue problem is posed using the Fock-space Hamiltonian operator obtained by solving the RGPEP equations up to second order in powers of the coupling constant. The eigenstate components that contain three quarks and two or more gluons are heuristically removed at the price of inserting a gluon-mass term in the component with one gluon. The resulting problem is reduced to the equivalent one for the component of three quarks and no gluons. Each of the three quark-quark interaction terms thus obtained consists of a spin-dependent Coulomb term and a spin-independent harmonic oscillator term. Quark masses are chosen to fit the lightest spin-one quarkonia masses most accurately. The resulting estimates for bbb and ccc states match estimates obtained in lattice QCD and in quark models. Masses of ccb and bbc states are also estimated. The corresponding wave functions are invariant with respect to boosts. In the ccb states, charm quarks tend to form diquarks. The accuracy of our approximate Hamiltonian can be estimated through comparison by including components with two gluons within the same method.
In response to the growing need for theoretical tools that can be used in QCD to describe and understand the dynamics of gluons in hadrons in the Minkowski space-time, the renormalization group procedure for effective particles (RGPEP) is shown in the simplest available context of heavy quarkonia to exhibit a welcome degree of universality in the first approximation it yields once one assumes that beyond perturbation theory gluons obtain effective mass. Namely, in the second-order terms, the Coulomb potential with Breit-Fermi spin couplings in the effective quark-antiquark component of a heavy quarkonium, is corrected in one-flavor QCD by a spin-independent harmonic oscillator term that does not depend on the assumed effective gluon mass or the choice of the RGPEP generator. The new generator we use here is much simpler than the ones used before and has the advantage of being suitable for studies of the effective gluon dynamics at higher orders than the second and beyond the perturbative expansion.
Schrödinger equation with potential −g/r 2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem. of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.