Ionospheric disturbances associated with the M8.8 Chile earthquake (35.91°S, 72.73°W) on 27 February 2010 were observed at Kazan, Russia (55.85°N, 48.81°E). Rapid‐run ionograms at 1 min intervals exhibited multiple‐cusp signatures (MCSs) for more than 30 min, which have been observed several times after large earthquakes. The ionospheric disturbances were caused by infrasound propagating upward in the atmosphere, which modified the electron density distribution through ion‐neutral collisions. The anomaly of the vertical electron density distribution responsible for the MCSs was analyzed by converting the ionogram traces into real height profiles. The density profiles at 1 min intervals allowed the tracking of the vertical propagation of infrasound and provided information on parameters of acoustic waves, which was not possible from the previous measurements such as standard ionograms at 5–15 min intervals, HF Doppler soundings, and total electron content using satellite beacon signals. The speed of acoustic waves in the thermosphere was evaluated from the consecutive ionograms with MCSs, and it was found that the thermospheric temperature was slightly higher than that calculated using the Mass Spectrometer and Incoherent Scatter Radar empirical model (NRLMSISE‐00).
Abstract. The vertical ground motion of seismic surface waves launches acoustic waves into the atmosphere and induces ionospheric disturbances. Disturbances due to Rayleigh waves near the short-period Airy phase appear as wavy fluctuations in the virtual height of an ionogram and have a multiple-cusp signature (MCS) when the fluctuation amplitude is increased. An extremely developed MCS was observed at Kazan, Russia, after the 2010 M 8.8 Chile earthquake. The ionogram exhibited steep satellite traces for which the virtual heights increased rapidly with frequency starting near the top of cusps and continuing for 0.1-0.2 MHz. This complicated ionogram was analyzed by applying a ray tracing technique to the radio wave propagation in the ionosphere that was perturbed by acoustic waves. Acoustic wavefronts were inclined by the effects of finite Rayleigh wave velocity and sound speed in the thermosphere. The satellite echo traces were reproduced by oblique returns from the inclined wavefronts, in addition to the nearly vertical returns that are responsible for the main trace.
In this study, we analyzed a large number of vertical sounding ionograms, obtained by the mid-latitude Cyclone ionosonde (55.85° N; 48.8° E) of Kazan (Volga Region) Federal University, which operates in a rapid-run mode of ionograms (1 ionogram per minute). Ionograms with a sporadic E layer type c, which have an unusual double cusp on the trace from the sporadic layer, were found among them. We attempted to simulate this unusual double cusp trace shape. Model calculations were performed to clarify the reasons for the appearance of the double cusp and to determine the shape of the lower part of the E and Es layers. The simulation was performed by fitting the profile of the electron densities of the E and Es layers, calculating the virtual reflection heights based on the refractive index using the Appleton-Hartree formula, and comparing them with the virtual heights of the layers on the ionogram. An estimate of the half-thickness of the lower part of the Es-layer was obtained. The possible reasons for the appearance of a trace with a double cusp of the Es layer are discussed. We assumed that the possible reasons for this phenomenon were the stratification of the E layer, and the interaction between the E and F layers in the form of descending or intermediate layers and atmospheric wave propagation. As an illustration of these phenomena, examples of an intermediate (descending) sporadic E layer and stratification of the E region and the Es layer are given according to observations of the lower ionosphere. These examples were obtained through the resonant scattering of probe radio waves by artificial periodic irregularities (API technique) of the ionospheric plasma, performed on the SURA mid-latitude heating facility (56.1° N; 46.1° E). The scattering of probe radio waves on the APIs generated by the heating facility made it possible to study various phenomena in the Earth’s ionosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.