With the current advancement in the Internet, there has been a growing demand for building intelligent and smart systems that can efficiently address the detection of health-related problems on social media, such as the detection of depression and anxiety. These types of systems, which are mainly dependent on machine learning techniques, must be able to deal with obtaining the semantic and syntactic meaning of texts posted by users on social media. The data generated by users on social media contains unstructured and unpredictable content. Several systems based on machine learning and social media platforms have recently been introduced to identify health-related problems. However, the text representation and deep learning techniques employed provide only limited information and knowledge about the different texts posted by users. This is owing to a lack of long-term dependencies between each word in the entire text and a lack of proper exploitation of recent deep learning schemes. In this paper, we propose a novel framework to efficiently and effectively identify depression and anxiety-related posts while maintaining the contextual and semantic meaning of the words used in the whole corpus when applying bidirectional encoder representations from transformers (BERT). In addition, we propose a knowledge distillation technique, which is a recent technique for transferring knowledge from a large pretrained model (BERT) to a smaller model to boost performance and accuracy. We also devised our own data collection framework from Reddit and Twitter, which are the most common social media sites. Finally, we employed word2vec and BERT with Bi-LSTM to effectively analyze and detect depression and anxiety signs from social media posts. Our system surpasses other state-of-the-art methods and achieves an accuracy of 98% using the knowledge distillation technique.
In road networks, [Formula: see text]-range nearest neighbor ([Formula: see text]-RNN) queries locate the [Formula: see text]-closest neighbors for every point on the road segments, within a given query region defined by the user, based on the network distance. This is an important task because the user's location information may be inaccurate; furthermore, users may be unwilling to reveal their exact location for privacy reasons. Therefore, under this type of specific situation, the server returns candidate objects for every point on the road segments and the client evaluates and chooses exact [Formula: see text] nearest objects from the candidate objects. Evaluating the query results at each timestamp to keep the freshness of the query answer, while the query object is moving, will create significant computation burden for the client. We therefore propose an efficient approach called a safe-region-based approach (SRA) for computing a safe segment region and the safe exit points of a moving nearest neighbor (NN) query in a road network. SRA avoids evaluation of candidate answers returned by the location-based server since it will have high computation cost in the query side. Additionally, we applied SRA for a directed road network, where each road network has a particular orientation and the network distances are not symmetric. Our experimental results demonstrate that SRA significantly outperforms a conventional solution in terms of both computational and communication costs.
In road networks, k-Range Nearest Neighbor (kRNN) queries locate the k-nearest neighbors for every point on the road segments that are within a given query region, based on the network distance. This is an important task, because the user's location information may not be accurate; furthermore, users may be unwilling to reveal their exact location for privacy reasons. Therefore, in this specific situation, evaluating the query result at each point and communicating with the server will create a significant communication burden for the client. We propose an efficient approach that computes a safe segment region for each inside road segment, such that the client is not required to evaluate the query answer returned by the LBS (location-based server) within the safe region. In addition, our safe region-based query processing algorithm is designed for a directed road network, where each road network has a particular orientation. In contrast, previous kRNN research produced algorithms that operated only in undirected road networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.