Following exposure to radiation and chemotherapeutic agents, the epidermal growth factor receptor (EGFR) can modulate the repair of DNA double-strand breaks (DSB) by forming protein complexes that include the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). This is one of the key mechanism by which tumors become resistant to DNA-damaging therapies. Our previous studies have shown that insulin-like growth factor binding protein-3 (IGFBP-3) is a substrate for DNA-PKcs, and can transactivate EGFR. We therefore questioned whether IGFBP-3 might interact with the EGFR-DNA-PK complex that regulates the DNA damage response. The aim of this study was to delineate the role of IGFBP-3 in the response of breast cancer cells to DSB-inducing chemotherapeutic agents. In the estrogen receptor-negative breast cancer cell lines MDA-MB-468 and Hs578T, which express IGFBP-3 highly, nuclear localization of EGFR and IGFBP-3 was enhanced by treatment with cytotoxic drugs etoposide or doxorubicin and reduced by the EGFR kinase inhibitor gefitinib. Enhanced association among IGFBP-3, EGFR and DNA-PKcs, following the exposure to DNA-damaging drugs was supported by both co-immunoprecipitation analysis and direct visualization by proximity ligation assay. The activation of DNA-PKcs at Ser2056, DNA repair as measured by a nonhomologous end-joining assay, and the increase in EGFR and DNA-PKcs interaction induced by DNA-damaging agents, were all decreased by IGFBP-3 silencing, suggesting that IGFBP-3 has an obligatory role in the DNA repair response to DNA-damaging therapy. In conclusion, IGFBP-3 co-translocation to the nucleus of breast cancer cells and its formation of a complex with DNA-PKcs and EGFR in response to DNA damage shows its potential involvement in the regulation of DNA repair. This suggests the possibility of a therapeutic approach for sensitizing breast cancer to chemo- or radiotherapy by targeting the DNA repair function of IGFBP-3.
Insulin-like growth factor binding protein-3 (IGFBP-3) is a key regulatory molecule of the IGF axis and can function in a tissue-specific way as both a tumor suppressor and promoter. Triple-negative breast cancer (TNBC) has high tumor expression of IGFBP-3 associated with markers of poor prognosis and, although accounting for 15–20% of all breast cancers, is responsible for disproportionate rates of morbidity and mortality. Because they lack estrogen and progesterone receptors and overexpression of HER2, TNBC are resistant to treatments that target these molecules, making the development of new therapies an important goal. In addition to frequent high expression of IGFBP-3, these tumors also express EGFR highly, but targeting EGFR signaling alone in TNBC has been of little success. Identification of a functional growth-stimulatory interaction between EGFR and IGFBP-3 signaling prompted investigation into cotargeting these pathways as a novel therapy for TNBC. This involves inhibition of both EGFR kinase activity and a mediator of IGFBP-3's stimulatory bioactivity, sphingosine kinase-1 (SphK1), and has shown promise in a preclinical setting. Functional interaction between EGFR and IGFBP-3 may also promote chemoresistance in TNBC, and delineating the mechanisms involved may identify additional targets for development of therapies in cancers that express both IGFBP-3 and EGFR.
MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic substrate phosphorylation is correctly maintained. It achieves this through the phosphorylation of alpha-endosulfine and subsequent inhibition of the tumor suppressor PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel oncogenic kinase that is upregulated in a number of cancer types, correlating with chromosome instability and poor patient survival. While the chromosome instability is likely directly linked to MASTL’s control of mitotic phosphorylation, several new studies indicated that MASTL has additional effects outside of mitosis and beyond regulation of PP2A-B55. These include control of normal DNA replication timing, and regulation of AKT/mTOR and Wnt/β-catenin oncogenic kinase signaling. In this review, we will examine the phenotypes and mechanisms for how MASTL, ENSA, and PP2A-B55 deregulation drives tumor progression and metastasis. Finally, we will explore the rationale for the future development of MASTL inhibitors as new cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.