BackgroundStandard treatment of oropharyngeal squamous cell carcinoma (OPSCC) is associated with high morbidity, whereas immunotherapeutic approaches using PD-1:PD-L1 checkpoint blockade only show moderate response rates in OPSCC patients. Therefore, a better stratification of patients and the development of novel therapeutic protocols are crucially needed. The importance of tumor-infiltrating B cells (TIL-Bs) in shaping antitumor immunity remains unclear; therefore, we analyzed frequency, phenotype, prognostic value and possible roles of TIL-Bs in OPSCC.MethodsWe utilized transcriptomic analysis of immune response-related genes in 18 OPSCC samples with respect to human papillomavirus (HPV) status. The density and localization of CD20+, CD8+ and DC-LAMP+ cells were subsequently analyzed in 72 tissue sections of primary OPSCC samples in relation to patients’ prognosis. The immunohistochemical approach was supplemented by flow cytometry-based analysis of phenotype and functionality of TIL-Bs in freshly resected primary OPSCC tissues.ResultsWe observed significantly higher expression of B cell-related genes and higher densities of CD20+ B cells in HPV-associated OPSCC samples. Interestingly, CD20+ TIL-Bs and CD8+ T cells formed non-organized aggregates with interacting cells within the tumor tissue. The densities of both intraepithelial CD20+ B cells and B cell/CD8+ T cell interactions showed prognostic significance, which surpassed HPV positivity and CD8+ TIL density in stratification of OPSCC patients. High density of TIL-Bs was associated with an activated B cell phenotype, high CXCL9 production and high levels of tumor-infiltrating CD8+ T cells. Importantly, the abundance of direct B cell/CD8+ T cell interactions positively correlated with the frequency of HPV16-specific CD8+ T cells, whereas the absence of B cells in tumor-derived cell cultures markedly reduced CD8+ T cell survival.ConclusionsOur results indicate that high abundance of TIL-Bs and high density of direct B cell/CD8+ T cell interactions can predict patients with excellent prognosis, who would benefit from less invasive treatment. We propose that in extensively infiltrated tumors, TIL-Bs might recruit CD8+ T cells via CXCL9 and due to a highly activated phenotype contribute by secondary costimulation to the maintenance of CD8+ T cells in the tumor microenvironment.Electronic supplementary materialThe online version of this article (10.1186/s40425-019-0726-6) contains supplementary material, which is available to authorized users.
Purpose: In multiple oncological settings, expression of the coinhibitory ligand PD-L1 by malignant cells and tumor infiltration by immune cells expressing coinhibitory receptors such as PD-1, CTLA4, LAG-3, or TIM-3 conveys prognostic or predictive information. Conversely, the impact of these features of the tumor microenvironment on disease outcome among high-grade serous carcinoma (HGSC) patients remains controversial. Experimental Design: We harnessed a retrospective cohort of 80 chemotherapy-na€ ve HGSC patients to investigate PD-L1 expression and tumor infiltration by CD8 þ T cells, CD20 þ B cells, DC-LAMP þ dendritic cells as well as by PD-1 þ , CTLA4 þ , LAG-3 þ , and TIM-3 þ cells in relation with prognosis and function orientation of the tumor microenvironment. IHC data were complemented with transcriptomic and functional studies on a second prospective cohort of freshly resected HGSC samples. In silico analysis of publicly available RNA expression data from 308 HGSC samples was used as a confirmatory approach. Results: High levels of PD-L1 and high densities of PD-1 þ cells in the microenvironment of HGSCs were strongly associated with an immune contexture characterized by a robust T H 1 polarization and cytotoxic orientation that enabled superior clinical benefits. Moreover, PD-1 þ TIM-3 þ CD8 þ T cells presented all features of functional exhaustion and correlated with poor disease outcome. However, although PD-L1 levels and tumor infiltration by TIM-3 þ cells improved patient stratification based on the intratumoral abundance of CD8 þ T cells, the amount of PD-1 þ cells failed to do so. Conclusions: Our data indicate that PD-L1 and TIM-3 constitute prognostically relevant biomarkers of active and suppressed immune responses against HGSC, respectively.
Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous disease that affects more than 800,000 patients worldwide each year. The variability of HNSCC is associated with differences in the carcinogenesis processes that are caused by two major etiological agents, namely, alcohol/tobacco, and human papillomavirus (HPV). Compared to non-virally induced carcinomas, the oropharyngeal tumors associated with HPV infection show markedly better clinical outcomes and are characterized by an immunologically "hot" landscape with high levels of tumor-infiltrating lymphocytes. However, the standard of care remains the same for both HPV-positive and HPV-negative HNSCC. Surprisingly, treatment de-escalation trials have not shown any clinical benefit in patients with HPV-positive tumors to date, most likely due to insufficient patient stratification. The in-depth analysis of the immune response, which places an emphasis on tumor-infiltrating immune cells, is a widely accepted prognostic tool that might significantly improve both the stratification of HNSCC patients in de-escalation trials and the development of novel immunotherapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.