We investigate the photodissociation dynamics of C–Cl bond in chloroalkanes CH3Cl, n-C3H7Cl, i-C3H7Cl, n-C5H11Cl, combining velocity map imaging (VMI) experiment and direct ab initio dynamical simulations. The Cl fragment kinetic...
Large ammonia clusters represent a model system of ices which are omnipresent throughout the space. The interaction of ammonia ices with other hydrogen-boding molecules such as methanol or water and their behavior upon an ionization are thus relevant in the astrochemical context. In this study, ammonia clusters (NH3)N with the mean size N¯ ≈230 were prepared in molecular beams and passed through a pickup cell in which methanol molecules were adsorbed. At the highest exploited pickup pressures, the average composition of (NH3)N(CH3OH)M clusters was estimated to be N:M≈ 210:10. On the other hand, the electron ionization of these clusters yielded about 75% of methanol-containing fragments (NH3)n(CH3OH)mH + compared to 25% contribution of pure ammonia (NH3)nH + ions. Based on this substantial disproportion, we propose the following ionization mechanism: The prevailing ammonia is ionized in most cases, resulting in NH + 4 core solvated most likely with four ammonia molecules, yielding the well-known "magic number" structure (NH 3 ) 4 NH + 4 .The methanol molecules exhibit strong propensity for sticking to the fragment ion. We have also considered mechanisms of intracluster reactions. In most cases, proton transfer between ammonia units take place. The theoretical calculations suggested the proton transfer either from the methyl group or from the hydroxyl group of the ionized methanol molecule to ammonia to be the energetically open channels. However, the experiments with selectively deuterated methanols did not show any evidence for the D + transfer from the CD 3 group. The proton transfer from the hydroxyl group could not be excluded entirely nor confirmed unambiguously by the experiment.
Abstract. BaTiO 3 films deposited onto TiNb and Ti substrates using hydrothermal synthesis method were studied in the presented work. These films are supposed to improve properties of bone implants due to their ferroelectric behaviour, because ferroelectrics induce improved bone formation. A great question is the chemical stability of the used material. It can be crucial for its biocompatibility and possible in vivo application. We studied chemical composition of prepared samples, especially concentration of Ba and Ti and trends of these concentrations stimulated by a solution saline action. The Ba and Ti concentrations were determined by XPS under ultra -high vacuum condition. The BaTiO 3 films were investigated as received after the preparation procedure as well as after a longtime treatment in solution saline. Every sample was introduced to the solution saline at first for 1 and later for 3 weeks. Ti concentration almost does not change during our experiments while a meaningful Ba decrease is observed. Nevertheless, barium release seems to slow down with respect to the time of solution saline action. Stability of barium titanate films in a period of several months and an absolute amount of the released barium will be a subject of the next research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.