Abstract. We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (~ 80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dates reveal a detailed chronology for the last 14 ka BP. The δ 13C record measured on the benthonic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values termed carbon isotope excursion (CIE I and CIE II, respectively). The values were as low as −4.37‰ in CIE I, correlating with the Bølling–Allerød interstadials, and as low as −3.41‰ in CIE II, correlating with the early Holocene. In the Bølling–Allerød interstadials, the planktonic foraminifera also show negative values, probably indicating secondary methane-derived authigenic precipitation affecting the foraminiferal shells. After a cleaning procedure designed to remove authigenic carbonate coatings on benthonic foraminiferal tests from this event, the 13C values are still negative (as low as −2.75‰). The CIE I and CIE II occurred during periods of ocean warming, sea-level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic, suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.
T. L. 2017 (April): Diagenetic disturbances of marine sedimentary records from methane-influenced environments in the Fram Strait as indications of variation in seep intensity during the last 35 000 years.The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep-sea records from methane-influenced environments in three cores from an active and very heterogeneous seep-area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS-14 C dates, sedimentary data and biostratigraphy. Extremely low d 13 C values recorded in both benthic and planktonic foraminifera during the Bølling-Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane-derived authigenic carbonates. The d 18 O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the d 18 O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane-related palaeo-reductive environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.