Previous studies have demonstrated an inverse relation between resting muscle sympathetic nerve activity (MSNA) and vasoconstrictor responsiveness (i.e., sympathetic transduction), such that those with high resting MSNA have low vascular responsiveness, and vice versa. The purpose of this investigation was to determine whether biological sex influences the balance between resting MSNA and beat-to-beat sympathetic transduction. We measured blood pressure (BP) and MSNA during supine rest in 54 healthy young adults (27 females: 23 ± 4 yr, 107 ± 8/63 ± 8 mmHg; 27 males: 25 ± 3 yr, 115 ± 11/64 ± 7 mmHg; means ± SD). We quantified beat-to-beat fluctuations in mean arterial pressure (MAP, mmHg) and limb vascular conductance (LVC, %) for 10 cardiac cycles after each MSNA burst using signal averaging, an index of sympathetic vascular transduction. In females, there was no correlation between resting MSNA (burst incidence; burst/100 heartbeats) and peak ΔMAP ( r = −0.10, P = 0.62) or peak ΔLVC ( r = −0.12, P = 0.63). In males, MSNA was related to peak ΔMAP ( r = −0.50, P = 0.01) and peak ΔLVC ( r = 0.49, P = 0.03); those with higher resting MSNA had blunted increases in MAP and reductions in LVC in response to a burst of MSNA. In a sub-analysis, we performed a median split between high- versus low-MSNA status on ΔMAP and ΔLVC within each sex and found that only males demonstrated a significant difference in ΔMAP and ΔLVC between high- versus low-MSNA groups. These findings support an inverse relation between resting MSNA and sympathetic vascular transduction in males only and advance our understanding on the influence of biological sex on sympathetic nervous system-mediated alterations in beat-to-beat BP regulation.
The American Heart Association recommends no more than 1500 mg of sodium/day as ideal. Some cohort studies suggest low-sodium intake is associated with increased cardiovascular mortality. Extremely low-sodium diets (≤500 mg/d) elicit activation of the renin-angiotensin-aldosterone system and stimulate sympathetic outflow. The effects of an American Heart Association–recommended diet on sympathetic regulation of the vasculature are unclear. Therefore, we assessed whether a 1000 mg/d diet alters sympathetic outflow and sympathetic vascular transduction compared with the more commonly recommended 2300 mg/d. We hypothesized that sodium reduction from 2300 to 1000 mg/d would not affect resting sympathetic outflow but would reduce sympathetic transduction in healthy young adults. Seventeen participants (age: 26±2 years, 9F/8M) completed 10-day 2300 and 1000 mg/d sodium diets in this randomized controlled feeding study (crossover). We measured resting renin activity, angiotensin II, aldosterone, blood pressure, muscle sympathetic nerve activity, and norepinephrine. We quantified beat-by-beat changes in mean arterial pressure and leg vascular conductance (femoral artery ultrasound) following spontaneous sympathetic bursts to assess sympathetic vascular transduction. Reducing sodium to 1000 mg/d increased renin activity, angiotensin II, and aldosterone ( P <0.01 for all) but did not alter mean arterial pressure (78±2 versus 77±2 mm Hg, P =0.56), muscle sympathetic nerve activity (13.9±1.3 versus 13.9±0.8 bursts/min, P =0.98), or plasma/urine norepinephrine. Sympathetic vascular transduction decreased ( P <0.01). These data suggest that reducing sodium from 2300 to 1000 mg/d stimulates the renin-angiotensin-aldosterone system, does not increase resting basal sympathetic outflow, and reduces sympathetic vascular transduction in normotensive adults.
Background High sodium (Na + ) intake is a widespread cardiovascular disease risk factor. High Na + intake impairs endothelial function and exaggerates sympathetic reflexes, which may augment exercising blood pressure (BP) responses. Therefore, this study examined the influence of high dietary Na + on BP responses during submaximal aerobic exercise. Methods and Results Twenty adults (8F/12M, age=24±4 years; body mass index 23.0±0.6 kg·m −2 ; VO 2 peak=39.7±9.8 mL·min −1 ·kg −1 ; systolic BP=111±10 mm Hg; diastolic BP=64±8 mm Hg) participated in this randomized, double‐blind, placebo‐controlled crossover study. Total Na + intake was manipulated via ingestion of capsules containing either a placebo (dextrose) or table salt (3900 mg Na + /day) for 10 days each, separated by ≥2 weeks. On day 10 of each intervention, endothelial function was assessed via flow‐mediated dilation followed by BP measurement at rest and during 50 minutes of cycling at 60% VO 2peak . Throughout exercise, BP was assessed continuously via finger photoplethysmography and every 5 minutes via auscultation. Venous blood samples were collected at rest and during the final 10 minutes of exercise for assessment of norepinephrine. High Na + intake increased urinary Na + excretion (placebo=140±68 versus Na + =282±70 mmol·24H −1 ; P <0.001) and reduced flow‐mediated dilation (placebo=7.2±2.4 versus Na + =4.2±1.7%; P <0.001). Average exercising systolic BP was augmented following high Na + (placebo=Δ30.0±16.3 versus Na + =Δ38.3±16.2 mm Hg; P =0.03) and correlated to the reduction in flow‐mediated dilation ( R =−0.71, P =0.002). Resting norepinephrine concentration was not different between conditions ( P =0.82). Norepinephrine increased during exercise ( P =0.002), but there was no Na + effect ( P =0.26). Conclusions High dietary Na + augments BP responses during submaximal aerobic exercise, which may be mediated, in part, by impaired endothelial function.
Excess dietary salt intake excites central sympathetic networks, which may be related to plasma hypernatremia. Plasma hypernatremia also occurs following water deprivation (WD). The purpose of this study was to test the hypothesis that WD induces hypernatremia and consequently augments sympathetic and pressor responses to sympathoexcitatory stimuli in rats and humans. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses to sciatic afferent nerve stimulation (2–20 Hz) and chemical stimulation of the rostral ventrolateral medulla (RVLM) were assessed in rats after 48 h of WD and compared with normally hydrated control rats (CON). In a parallel randomized-crossover human experiment ( n = 13 healthy young adults), sympathetic (microneurography) and pressor (photoplethysmography) responses to static exercise were compared between 16-h WD and CON conditions. In rats, plasma [Na+] was significantly higher in WD versus CON [136 ± 2 vs. 144 ± 2 (SD) mM, P < 0.01], but sciatic afferent nerve stimulation produced similar increases in renal SNA [5 Hz, 174 ± 34 vs. 169 ± 49% (SD), n = 6–8] and mean ABP [5 Hz, 21 ± 6 vs. 18 ± 7 (SD mmHg, n = 6–8]. RVLM injection of l-glutamate also produced similar increases in SNA and ABP in WD versus CON rats. In humans, WD increased serum [Na+] [140.6 ± 2.1 vs. 142.1 ± 1.9 mM (SD), P = 0.02] but did not augment sympathetic [muscle SNA: change from baseline (Δ) 6 ± 7 vs. 5 ± 7 (SD) bursts/min, P = 0.83] or mean ABP [Δ 12 ± 5 vs. 11 ± 8 (SD) mmHg, P = 0.73; WD vs. CON for all results] responses during the final minute of exercise. These findings suggest that despite eliciting relative hypernatremia, WD does not augment sympathetic or pressor responses to sciatic afferent stimulation in rats or to static exercise in humans. NEW & NOTEWORTHY Excess dietary salt intake excites central sympathetic networks, which may be related to plasma hypernatremia. Plasma hypernatremia also occurs following water deprivation (WD). We sought to determine whether plasma hypernatremia/hyperosmolality induced by WD augments sympathetic and pressor responses to sympathoexcitatory stimuli. Our findings suggest that WD does not augment sympathetic or pressor responses to sciatic afferent nerve stimulation in rats or to static exercise in humans.
BACKGROUND High sodium (Na+) intake augments blood pressure variability (BPV) in normotensive rodents, without changes in resting blood pressure (BP). Augmented BPV is associated with end-organ damage and cardiovascular morbidity. It is unknown if changes in dietary Na+ influence BPV in humans. We tested the hypothesis that high Na+ feeding would augment BPV in healthy adults. METHODS Twenty-one participants (10 F/11 M; 26 ± 5 years; BP: 113 ± 11/62 ± 7 mm Hg) underwent a randomized, controlled feeding study that consisted of 10 days of low (2.6 g/day), medium (6.0 g/day), and high (18.0 g/day) salt diets. On the ninth day of each diet, 24-h urine samples were collected and BPV was calculated from 24-h ambulatory BP monitoring. On the tenth day, in-laboratory beat-to-beat BPV was calculated during 10 min of rest. Serum electrolytes were assessed. We calculated average real variability (ARV) and standard deviation (SD) as metrics of BPV. As a secondary analysis, we calculated central BPV from the 24-h ambulatory BP monitoring. RESULTS 24-h urinary Na+ excretion (low = 41 ± 24, medium = 97 ± 43, high = 265 ± 92 mmol/24 h, P < 0.01) and serum Na+ (low = 140.0 ± 2.1, medium = 140.7 ± 2.7, high = 141.7 ± 2.5 mmol/l, P = 0.009) increased with greater salt intake. 24-h ambulatory ARV (systolic BP ARV: low = 9.5 ± 1.7, medium = 9.5 ± 1.2, high = 10.0 ± 1.9 mm Hg, P = 0.37) and beat-to-beat ARV (systolic BP ARV: low = 2.1 ± 0.6, medium = 2.0 ± 0.4, high = 2.2 ± 0.8 mm Hg, P = 0.46) were not different. 24-h ambulatory SD (systolic BP: P = 0.29) and beat-to-beat SD (systolic BP: P = 0.47) were not different. There was a trend for a main effect of the diet (P = 0.08) for 24-h ambulatory central systolic BPV. CONCLUSIONS Ten days of high sodium feeding does not augment peripheral BPV in healthy, adults. CLINICAL TRIALS REGISTRATION NCT02881515.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.