Among the bacteria groups, most of them are known to be beneficial to human being whereas only a minority is being recognized as harmful. The pathogenicity of bacteria is due, in part, to their rapid adaptation in the presence of selective pressures exerted by the human host. In addition, through their genomes, bacteria are subject to mutations, various rearrangements or horizontal gene transfer among and/or within bacterial species. Bacteria's essential metabolic functions are generally encoding by the core genes. Apart of the core genes, there are several number of mobile genetic elements (MGE) acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. These MGE namely bacteriophages, transposons, plasmids, and pathogenicity islands represent about 15% Staphylococcus aureus genomes. The acquisition of most of the MGE is made by horizontal genomic islands (GEI), recognized as discrete DNA segments between closely related strains, transfer. The GEI contributes to the wide spread of microorganisms with an important effect on their genome plasticity and evolution. The GEI are also involve in the antibiotics resistance and virulence genes dissemination. In this review, we summarize the mobile genetic elements of S. aureus.
Electrospun polyamide (PA) nanofibers have great potential for medical applications (in dermatology as antimicrobial compound carriers or surgical sutures). However, little is known about microbial colonization on these materials. Suitable methods need to be chosen and optimized for the analysis of biofilms formed on nanofibers and the influence of their morphology on biofilm formation. We analyzed 11 PA nanomaterials, both nonfunctionalized and functionalized with AgNO3, and tested the formation of a biofilm by clinically relevant bacteria (Escherichia coli CCM 4517, Staphylococcus aureus CCM 3953, and Staphylococcus epidermidis CCM 4418). By four different methods, it was confirmed that all of these bacteria attached to the PAs and formed biofilms; however, it was found that the selected method can influence the outcomes. For studying biofilms formed by the selected bacteria, scanning electron microscopy, resazurin staining, and colony-forming unit enumeration provided appropriate and comparable results. The values obtained by crystal violet (CV) staining were misleading due to the binding of the CV dye to the PA structure. In addition, the effect of nanofiber morphology parameters (fiber diameter and air permeability) and AgNO3 functionalization significantly influenced biofilm maturation. Furthermore, the correlations between air permeability and surface density and fiber diameter were revealed. Based on the statistical analysis, fiber diameter was confirmed as a crucial factor influencing biofilm formation (p ≤ 0.01). The functionalization of PAs with AgNO3 (from 0.1 wt %) effectively suppressed biofilm formation. The PA functionalized with a concentration of 0.1 wt % AgNO3 influenced the biofilm equally as nonfunctionalized PA 8% 2 g/m2. Therefore, biofilm formation could be affected by the above-mentioned morphology parameters, and ultimately, the risk of infections from contaminated medical devices could be reduced.
Although nanomaterials are used in many fields, little is known about the fundamental interactions between nanomaterials and microorganisms. To test antimicrobial properties and retention ability, 13 electrospun polyamide (PA) nanomaterials with different morphology and functionalization with various concentrations of AgNO3 and chlorhexidine (CHX) were analyzed. Staphylococcus aureus CCM 4516 was used to verify the designed nanomaterials’ inhibition and permeability assays. All functionalized PAs suppressed bacterial growth, and the most effective antimicrobial nanomaterial was evaluated to be PA 12% with 4.0 wt% CHX (inhibition zones: 2.9 ± 0.2 mm; log10 suppression: 8.9 ± 0.0; inhibitory rate: 100.0%). Furthermore, the long-term stability of all functionalized PAs was tested. These nanomaterials can be stored at least nine months after their preparation without losing their antibacterial effect. A filtration apparatus was constructed for testing the retention of PAs. All of the PAs effectively retained the filtered bacteria with log10 removal of 3.3–6.8 and a retention rate of 96.7–100.0%. Surface density significantly influenced the retention efficiency of PAs (p ≤ 0.01), while the effect of fiber diameter was not confirmed (p ≥ 0.05). Due to their stability, retention, and antimicrobial properties, they can serve as a model for medical or filtration applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.