Image blurring artifact is the main challenge to any spatial, denoising filters. This artifact is contributed by the heterogeneous intensities within the given neighborhood or window of fixed size. Selection of most similar intensities (G-Neighbors) helps to adapt the window shape which is of edge-aware nature and subsequently reduce this blurring artifact. The paper presents a memristive circuit design to implement this variable pixel G-Neighbor filter. The memristive circuits exhibits parallel processing capabilities (near realtime) and neuromorphic architectures. The proposed design is demonstrated as simulations of both algorithm (MATLAB) and circuit (SPICE). Circuit design is evaluated for various parameters such as processing time, fabrication area used, and power consumption. Denoising performance is demonstrated using image quality metrics such as peak signal-tonoise ratio (PSNR), mean square error (MSE), and structural similarity index measure (SSIM). Combining adaptive filtering method with mean filter resulted in average improvement of MSE to about 65% reduction, increase of PSNR and SSIM to nearly 18% and 12% correspondingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.