The intracellular pH plays an important role in various cellular processes. In this work, we describe a method for monitoring of the intracellular pH in endothelial cells by using surface enhanced Raman spectroscopy (SERS) and 4-mercaptobenzoic acid (MBA) anchored to gold nanoparticles as pH-sensitive probes. Using the Raman microimaging technique, we analysed changes in intracellular pH induced by buffers with acid or alkaline pH, as well as in endothelial inflammation induced by tumour necrosis factor-α (TNFα). The targeted nanosensor enabled spatial pH measurements revealing distinct changes of the intracellular pH in endosomal compartments of the endothelium. Altogether, SERS-based analysis of intracellular pH proves to be a promising technique for a better understanding of intracellular pH regulation in various subcellular compartments.
Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.
Surface-enhanced
Raman scattering (SERS) is a powerful and sensitive
technique for the detection of fingerprint signals of molecules and
for the investigation of a series of surface chemical reactions. Many
studies introduced quantitative applications of SERS in various fields,
and several SERS methods have been implemented for each specific application,
ranging in performance characteristics, analytes used, instruments,
and analytical matrices. In general, very few methods have been validated
according to international guidelines. As a consequence, the application
of SERS in highly regulated environments is still considered risky,
and the perception of a poorly reproducible and insufficiently robust
analytical technique has persistently retarded its routine implementation.
Collaborative trials are a type of interlaboratory study (ILS) frequently
performed to ascertain the quality of a single analytical method.
The idea of an ILS of quantification with SERS arose within the framework
of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics
in an effort to overcome the problematic perception of quantitative
SERS methods. Here, we report the first interlaboratory SERS study
ever conducted, involving 15 laboratories and 44 researchers. In this
study, we tried to define a methodology to assess the reproducibility
and trueness of a quantitative SERS method and to compare different
methods. In our opinion, this is a first important step toward a “standardization”
process of SERS protocols, not proposed by a single laboratory but
by a larger community.
In this chapter, we describe biomedical applications of infrared microscopic imaging applied to human tissue sections. the central focus is human diseases including cervical cancer, neurodegenerative pathologies, and dysfunctions of cardiac and liver tissues. In addition, we briefly describe the fundamentals of FtIR imaging instrumentation along with spectral pre-processing and hyperspectral image reconstruction. the chapter concludes with a summary of what is required to take FtIR imaging technology into the clinical environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.